版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南安市柳城中学2025届高二数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点到准线的距离为()A. B.C. D.12.设是区间上的连续函数,且在内可导,则下列结论中正确的是()A.的极值点一定是最值点B.的最值点一定是极值点C.在区间上可能没有极值点D.在区间上可能没有最值点3.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.4.已知直线、的方向向量分别为、,若,则等于()A.1 B.2C.0 D.35.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A. B.C. D.6.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则7.若数列满足,则的值为()A.2 B.C. D.8.在长方体中,()A. B.C. D.9.数列,,,,…,是其第()项A.17 B.18C.19 D.2010.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.8611.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}12.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平面直角坐标系内动点M()与定点F(4,0)的距离和M到定直线的距离之比是常数,则动点M的轨迹是___________14.数列满足,则_______________.15.已知双曲线左、右焦点分别为,,点P是双曲线左支上一点且,则______16.过圆内的点作一条直线,使它被该圆截得的线段最长,则直线的方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数在区间上的最大值和最小值;(2)求出方程的解的个数18.(12分)已知函数.(1)判断的单调性.(2)证明:.19.(12分)写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.20.(12分)已知函数(1)若,求曲线在处的切线方程(2)讨论函数的单调性21.(12分)已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.22.(10分)已知数列的前项和分别是,满足,,且.(1)求数列的通项公式;(2)若数列对任意都有恒成立,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由可得抛物线标椎方程为:,由焦点和准线方程即可得解.【详解】由可得抛物线标准方程为:,所以抛物线的焦点为,准线方程为,所以焦点到准线的距离为,故选:B【点睛】本题考了抛物线标准方程,考查了焦点和准线相关基本量,属于基础题.2、C【解析】根据连续函数的极值和最值的关系即可判断【详解】根据函数的极值与最值的概念知,的极值点不一定是最值点,的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数在区间上单调,则函数在区间上没有极值点,所以C正确故选:C.【点睛】本题主要考查函数的极值与最值的概念辨析,属于容易题3、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C4、C【解析】由可得出,利用空间向量数量积的坐标运算可得出关于实数的等式,由此可解得实数的值.【详解】若,则,所以,所以,解得.故选:C5、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C6、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C7、C【解析】通过列举得到数列具有周期性,,所以.详解】,同理可得:,可得,则.故选:C.8、D【解析】根据向量的运算法则得到,带入化简得到答案.【详解】在长方体中,易知,所以.故选:D.9、D【解析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.【详解】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故选:D.【点睛】此题考查了由数列的项归纳出数列的通项公式,考查归纳能力,属于基础题.10、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.11、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.12、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直接法,即可求轨迹.【详解】解:动点与定点的距离和它到定直线的距离之比是常数,根据题意得,点的轨迹就是集合,由此得.将上式两边平方,并化简,得所以,动点的轨迹是长轴长、短轴长分别为12、的椭圆故答案为:14、【解析】利用来求得,进而求得正确答案.【详解】,,是数列是首项为,公差为的等差数列,所以,所以.故答案为:15、3【解析】根据双曲线方程求出,再根据双曲线的定义可知,即可得到、,再由正弦定理计算可得;【详解】解:因为双曲线为,所以、,因为点P是双曲线左支上一点且,所以,所以,,在中,由正弦定理可得,所以;故答案为:16、【解析】当直线l过圆心时满足题意,进而求出答案.【详解】圆的标准方程为:,圆心,当l过圆心时满足题意,,所以l的方程为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)f(x)的最大值为7,最小值为-33;(2)见解析.【解析】(1)求函数f(x)的导数,列表求其单调性即可;(2)求出函数f(x)的极值即可.【小问1详解】023+-+f(-2)=-33↗f(0)=7↘f(2)=-1↗f(3)=7∴f(x)的最大值为7,最小值为-33;【小问2详解】02+-+↗f(0)=7↘f(2)=-1↗当a<-1或a>7时,方程有一个根;当a=-1或7时,方程有两个根;当-1<a<7时,方程有三个根.18、(1)在R上单调递增,无单调递减区间;(2)证明见解析.【解析】(1)对求导,令并应用导数求最值,确定的符号,即可知的单调性.(2)利用作差法转化证明的结论,令结合导数研究其单调性,最后讨论的大小关系判断的符号即可证结论.【小问1详解】由题设,.令,则.当时,单调递减;当时,单调递增故,即,则在R上单调递增,无单调递减区间.【小问2详解】.令,则.令,则,显然在R上单调递增,且,∴当时,单调递减;当时,单调递增.故,即,在R上单调递增,又,∴当时,,;当时,,;当时,.综上,,即.【点睛】关键点点睛:第二问,应用作差法有,构造中间函数并应用导数研究单调性,最后讨论的大小证结论.19、(1)存在两个等边三角形不是相似的,假命题(2),真命题【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【小问1详解】解:命题“任意两个等边三角形都是相似的”是一个全称命题根据全称命题与存在性命题的关系,可得其否定“存在两个等边三角形不是相似的”,命题为假命题.【小问2详解】解:根据全称命题与存在性命题关系,可得:命题的否定为.因为,所以命题为真命题.20、(1)(2)答案见解析【解析】(1)根据导数的几何意义可求得切线斜率,结合切点可得切线方程;(2)求导后,分别在、和的情况下,根据的正负可得的单调性.【小问1详解】当时,,,,又,在处的切线方程为:,即;【小问2详解】,令,解得:,;当时,,在上单调递增;当时,若或,则;若,则;在和上单调递增,在上单调递减;当时,若或,则;若,则;在和上单调递增,在上单调递减;综上所述:当时,在上单调递增;当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减.21、(1)答案见解析(2)【解析】(1),进而分,,三种情况讨论求解即可;(2)由题意知在上恒成立,故令,再根据导数研究函数的最小值,注意到使,进而结合函数隐零点求解即可.【小问1详解】解:①,在上单调增;②,令,单调减单调增;③,单调增单调减.综上,当时,在上单调增;当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】解:由题意知在上恒成立,令,,单调递增∵,∴使得,即单调递减;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版建筑施工班组劳务合同
- 2025-2030年中国椴木灵芝市场竞争格局与前景发展策略分析报告
- 2025-2030年中国智能钻机市场发展状况及前景趋势分析报告
- 2025-2030年中国无影灯行业市场竞争格局及前景趋势预测报告
- 2025-2030年中国数字城市产业市场竞争格局与前景发展策略分析报告
- 2025-2030年中国拉挤环氧板行业市场规模分析及投资策略研究报告
- 2025-2030年中国堆肥市场需求分析及发展战略研究报告
- 2024版预埋件安装合同
- 2024版劳务清包合同集合
- 2024年货物进出口合同范本3篇
- 物业费收取协议书模板
- 电工(中级工)理论知识练习题(附参考答案)
- 工业设计概论试题
- 2024-2030年中国商务服务行业市场现状调查及投资前景研判报告
- 起重机的维护保养要求与月度、年度检查记录表
- 消防设施维护保养记录表
- 城区生活垃圾填埋场封场项目 投标方案(技术方案)
- 垃圾分类巡检督导方案
- 大一护理生涯发展展示
- 五年级上册数学应用题100题及答案
- 新生儿急救与复苏培训
评论
0/150
提交评论