2025届陕西省西安市高新一中、交大附中、师大附中数学高二上期末考试试题含解析_第1页
2025届陕西省西安市高新一中、交大附中、师大附中数学高二上期末考试试题含解析_第2页
2025届陕西省西安市高新一中、交大附中、师大附中数学高二上期末考试试题含解析_第3页
2025届陕西省西安市高新一中、交大附中、师大附中数学高二上期末考试试题含解析_第4页
2025届陕西省西安市高新一中、交大附中、师大附中数学高二上期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省西安市高新一中、交大附中、师大附中数学高二上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线的焦点与椭圆的右焦点重合,则的值为A. B.C. D.2.已知点在平面内,是平面的一个法向量,则下列各点在平面内的是()A. B.C. D.3.直线l:的倾斜角为()A. B.C. D.4.已知等比数列,且,则()A.16 B.32C.24 D.645.已知集合,,则A. B.C. D.6.下列求导不正确的是()A B.C. D.7.抛物线的准线方程为()A. B.C. D.8.已知,,若,则实数()A. B.C.2 D.9.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交10.“若”为真命题,那么p是(

)A. B.C. D.11.已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A. B.C. D.12.设双曲线与幂函数的图象相交于,且过双曲线的左焦点的直线与函数的图象相切于,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,请写出一个符合条件的通项公式______14.设直线,直线,若,则_______.15.过抛物线的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则_________.16.生活中有这样的经验:三脚架在不平的地面上也可以稳固地支撑一部照相机.这个经验用我们所学的数学公理可以表述为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程18.(12分)如图,在四棱锥中,平面,四边形是菱形,,,是的中点(1)求证:;(2)已知二面角的余弦值为,求与平面所成角的正弦值19.(12分)已知椭圆左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程20.(12分)已知函数在其定义域内有两个不同的极值点(1)求a的取值范围;(2)设的两个极值点分别为,证明:21.(12分)如图,C是以为直径的圆上异于的点,平面平面分别是的中点.(1)证明:平面;(2)若直线与平面所成角的正切值为2,求锐二面角的余弦值.22.(10分)已知双曲线的渐近线方程为,且过点(1)求双曲线的方程;(2)过双曲线的一个焦点作斜率为的直线交双曲线于两点,求弦长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D2、B【解析】设平面内的一点为,由可得,进而可得满足的方程,将选项代入检验即可得正确选项.【详解】设平面内的一点为(不与点重合),则,因为是平面的一个法向量,所以,所以,即,对于A:,故选项A不正确;对于B:,故选项B正确;对于C:,故选项C不正确;对于D:,故选项D不正确,故选:B.3、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.4、A【解析】由等比数列的定义先求出公比,然后可解..【详解】,得故选:A5、B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.6、C【解析】由导数的运算法则、复合函数的求导法则计算后可判断【详解】A:;B:;C:;D:故选:C7、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.8、D【解析】根据给定条件利用空间向量平行的坐标表示计算作答.【详解】因,,又,则,解得,所以实数.故选:D9、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.10、A【解析】求不等式的解集,根据解集判断p.【详解】由解得-2<x<4,所以p是.故选:A.11、D【解析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.12、B【解析】设直线方程为,联立,利用判别式可得,进而可求,再结合双曲线的定义可求,即得.【详解】可设直线方程为,联立,得,由题意得,∴,,∴,即,由双曲线定义得,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)14、##0.5【解析】根据两直线平行可得,,即可求出【详解】依题可得,,解得故答案为:15、2【解析】分别过A,B作准线的垂线,垂足分别为,,由可求.【详解】分别过A,B作准线的垂线,垂足分别为,,设,,则,∴,∴.故答案为:2.16、不在同一直线上的三点确定一个平面【解析】根据题意结合平面公理2即可得出答案.【详解】解:根据题意可知,三脚架与地面接触的三个点不在同一直线上,则为数学中的平面公理2:不在同一直线上的三点确定一个平面.故答案为:不在同一直线上的三点确定一个平面.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据短轴长求出b,根据M在C上求出a;(2)根据题意设直线l为,与椭圆方程联立得根与系数关系,根据=即可求出m的值.【小问1详解】∵短轴长为2,∴,∴,又∵点在C上,∴,∴,∴椭圆C的标准方程为;【小问2详解】由(1)知,∵当直线l斜率为0时,不符合题意,∴设直线l的方程为:,联立,消x得:,∵,∴设,,则,∵,∴,∴,即,解得,∴直线l的方程为:或.18、(1)证明见解析;(2).【解析】(1)由菱形及线面垂直的性质可得、,再根据线面垂直的判定、性质即可证结论.(2)构建空间直角坐标系,设,结合已知确定相关点坐标,进而求面、面的法向量,结合已知二面角的余弦值求出参数t,再根据空间向量夹角的坐标表示求与平面所成角的正弦值【小问1详解】由平面,平面,则,又是菱形,则,又,所以平面,平面所以E.【小问2详解】分别以,,为,,轴正方向建立空间直角坐标系,设,则,由(1)知:平面的法向量为,令面的法向量为,则,令,可得,因为二面角的余弦值为,则,可得,则,设与平面所成的角为,又,,所以.19、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为20、(1);(2)证明见解析.【解析】(1)对函数求导,把问题转化为导函数值为0的方程有两个正根,再构造函数求解作答.(2)将所证不等式等价转化,构造函数,利用导数探讨其单调性作答.【小问1详解】函数的定义域为,求导得:,依题意,函数在上有两个不同极值点,于是得有两个不等的正根,令,,则,当时,,当时,,于是得在上单调递增,在上单调递减,,因,恒成立,即当时,的值从递减到0(不能取0),又,有两个不等的正根等价于直线与函数的图象有两个不同的公共点,如图,因此有,所以a取值范围是.【小问2详解】由(1)知分别是方程的两个不等的正根,,即,作差得,则有,原不等式,令,则,于是得,设,则,因此,在单调递增,则有,即成立,所以.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.21、(1)证明见解析(2)【解析】(1)由分别是的中点,得到,在由是圆的直径,所以,结合面面垂直的性质定理,证得面,即可证得面;(2)以C为坐标原点,为x轴,为y轴,过C垂直于面直线为z轴,建立空间直角坐标系,分别求得平面与平面的一个法向量,结合向量的夹角公式,即可求解.【小问1详解】证明:在,因为分别是的中点,所以,又因为是圆的直径,所以,又由平面平面,平面平面,且平面,所以面,因为,所以面.【小问2详解】解:由(1)知面,所以直线与平面所成角为,由题意知,以C为坐标原点,为x轴,为y轴,过C垂直于面的直线为z轴,建立空间直角坐标系,如图所示,可得,则,,设面的法向量为,则,取,可得,所以,设面的法向量为,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论