2025届湖北省天门市天门外国语高二上数学期末调研试题含解析_第1页
2025届湖北省天门市天门外国语高二上数学期末调研试题含解析_第2页
2025届湖北省天门市天门外国语高二上数学期末调研试题含解析_第3页
2025届湖北省天门市天门外国语高二上数学期末调研试题含解析_第4页
2025届湖北省天门市天门外国语高二上数学期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省天门市天门外国语高二上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.2.已知向量,,且,则的值是()A. B.C. D.3.三棱锥D-ABC中,AC=BD,且异面直线AC与BD所成角为60°,E、F分别是棱DC、AB的中点,则EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°4.若函数有零点,则实数的取值范围是()A. B.C. D.5.在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若,,,则的最小覆盖圆的半径为()A. B.C. D.6.已知空间三点,,在一条直线上,则实数的值是()A.2 B.4C.-4 D.-27.命题“,”否定是()A., B.,C., D.,8.已知数列的前n项和为,,,则()A. B.C. D.9.在棱长为1的正方体中,为的中点,则点到直线的距离为()A. B.1C. D.10.椭圆的左、右焦点分别为,过焦点的倾斜角为直线交椭圆于两点,弦长,若三角形的内切圆的面积为,则椭圆的离心率为()A. B.C. D.11.曲线上的点到直线的最短距离是()A. B.C. D.112.下列结论中正确的个数为()①,;②;③A.0 B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知是首项为,公差为1的等差数列,数列满足,若对任意的,都有成立,则实数的取值范围是________14.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______15.已知方程表示焦点在x轴上的双曲线,则m的取值范围为________16.已知抛物线上一点到其焦点的距离为10.抛物线的方程为_____________;准线方程为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求:(1)顶点的坐标;(2)直线的方程.18.(12分)已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)过原点的直线与圆交于M,N两点,若的面积为,求直线的方程.19.(12分)如图,在三棱锥中,,,为的中点(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角正弦值.20.(12分)已知:圆是的外接圆,边所在直线的方程为,中线所在直线的方程为,直线与圆相切于点.(1)求点和点的坐标;(2)求圆的方程.21.(12分)如图,在四棱锥中,平面底面ABCD,,,,,(1)证明:是直角三角形;(2)求平面PCD与平面PAB的夹角的余弦值22.(10分)已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.2、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.3、B【解析】取AD中点为G,连接GF、GE,易知△EFG为等腰三角形,且∠EGF为异面直线AC和BD所成角或其补角,据此可求∠FEG大小,从而得EF和AC所成的角的大小【详解】如图,取AD中点为G,连接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF为异面直线AC和BD所成角或其补角,故∠EGF=60°或120°故EF和AC所成角为∠FEG或其补角,当∠EGF=60°时,∠FEG=60°,当∠EGF=120°时,∠FEG=30°,∴EF和AC所成的角等于30°或60°故选:B4、A【解析】设,则函数有零点转化为函数的图象与直线有交点,利用导数判断函数的单调性,即可求出【详解】设,定义域为,则,易知为单调递增函数,且所以当时,,递减;当时,,递增,所以所以,即故选:A【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题5、C【解析】根据新定义只需求锐角三角形外接圆的方程即可得解.【详解】,,,为锐角三角形,的外接圆就是它的最小覆盖圆,设外接圆方程为,则解得的最小覆盖圆方程为,即,的最小覆盖圆的半径为.故选:C6、C【解析】根据三点在一条直线上,利用向量共线原理,解出实数的值.【详解】解:因为空间三点,,在一条直线上,所以,故.所以.故选:C.【点睛】本题主要考查向量共线原理,属于基础题.7、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.8、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D9、B【解析】建立空间直角坐标系,利用空间向量点到直线的距离公式进行求解即可【详解】建立如图所示的空间直角坐标系,由已知,得,,,,,所以在上的投影为,所以点到直线的距离为故选:B10、C【解析】由题可得直线AB的方程,从而可表示出三角形面积,又利用焦点三角形及三角形内切圆的性质,也可表示出三角形面积,则椭圆的离心率即求.【详解】由题知直线AB的方程为,即,∴到直线AB距离,又三角形的内切圆的面积为,则半径为1,由等面积可得,.故选:C.11、B【解析】先求与平行且与相切的切线切点,再根据点到直线距离公式得结果.【详解】设与平行的直线与相切,则切线斜率k=1,∵∴,由,得当时,即切点坐标为P(1,0),则点(1,0)到直线的距离就是线上的点到直线的最短距离,∴点(1,0)到直线的距离为:,∴曲线上的点到直线l:的距离的最小值为.故选:B12、C【解析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求得,再得出,对于任意的,都有成立,说明是中的最小项【详解】由题意,∴,易知函数在和上都是减函数,且时,,即,时,,,由题意对于任意的,都有成立,则是最小项,∴,解得,故答案为:14、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:15、【解析】根据焦点在轴的双曲线的标准方程的特征可得答案.【详解】因为双曲线的焦点在轴上,则,解得.所以的取值范围为故答案为:16、①.②.【解析】由题意得:抛物线焦点为F(0,),准线方程为y=﹣.因为点到其焦点的距离为10,所以根据抛物线的定义得到方程,得到该抛物线的准线方程【详解】∵抛物线方程∴抛物线焦点为F(0,),准线方程为y=﹣,又∵点到其焦点的距离为10,∴根据抛物线的定义,得9+=10,∴p=2,抛物线∴准线方程为故答案为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出直线的方程,然后联立直线、的方程,即可求得点的坐标;(2)设,可求得线段的中点的坐标,将点的坐标代入直线的方程,可求得的值,可得出点的坐标,进而利用直线的斜率和点斜式可得出直线的方程.【小问1详解】解:,所以,而,则,所以直线的方程为,由,解得,所以顶点的坐标为.【小问2详解】解:因为在直线,所以可设,由为线段的中点,所以,将的坐标代入直线的方程,所以,解得,所以.故,故直线的方程为,即.18、(1)(2)直线的方程为或或【解析】(1)由弦的中垂线与直线的交点为圆心即可求解;(2)由,可得或,进而有或,显然直线斜率存在,设直线,由点到直线的距离公式求出的值即可得答案.【小问1详解】解:设弦的中点为,则有,因为,所以直线,所以直线的中垂线为,则圆心在直线上,且在直线上,联立方程解得圆心,则圆的半径为,所以圆方程为;【小问2详解】解:设圆心到直线的距离为,因为,所以或,所以或,显然直线斜率存在,所以设直线,则或,解得或或,故直线的方程为或或.19、(1)证明见解析;(2).【解析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果【详解】(1)因为,为的中点,所以,且连结因为,所以为等腰直角三角形,且由知由知平面(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系由已知得取平面的法向量设,则设平面的法向量为由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以与平面所成角的正弦值为【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”20、(1)A(1,7),(2)【解析】(1)与的的交点为点D,与的的交点为点A,联立解方程即可得出结果.(2)设圆P的圆心P为,由,,计算求解即可得出点坐标,由求得半径,进而可得出圆的方程.【小问1详解】由题可得:与的的交点为点D,故由,解得:,故与的的交点为点A,,解得:,故A(1,7)【小问2详解】设圆P的圆心P为,由与圆相切于点A,且的斜率为,则即,即,①又圆P为的外接圆,则BC为圆P的弦,又边BC所在直线的科率为,故根据垂径定理,有进而,即②,联立①②,解得:,即故,则圆P的方程为:.21、(1)证明见解析(2)【解析】(1)连接BD,在四边形ABCD中求得,在中,取得,得到,由线面垂直的性质证得平面,得到,再由线面垂直的判定定理,证得平面PBD,进而得到,即可证得是直角三角形(2)以为原点,以所在直线为x轴,过点且与平行直线为y轴,所在直线为z轴,建立的空间直角坐标系,分别求得平面和平面的法向量,利用向量的夹角公式,即可求解.【小问1详解】证明:如图所示,连接BD,因为四边形中,可得,,,所以,,则在中,由余弦定理可得,所以,所以因为平面底面,平面底面,底面ABCD,所以平面PAB,因为平面PAB,所以,因为,,所以平面PBD因为平面PBD,所以,即是直角三角形【小问2详解】解:由(1)知平面PAB,取AB的中点O,连接PO,因为,所以,因为平面,平面底面,平面底面,所以底面,以为原点,以所在直线为x轴,过点且与平行的直线为y轴,所在直线为z轴,建立如图所示的空间直角坐标系,设,则,,,,,可得,,,设平面的一个法向量为,则,令,可得,,所以,因为是平面的一个法向量,所以,即平面与平面的夹角的余弦值为22、(1);(2)存在,定圆.【解析】(1)由题可得,,即求;(2)由题可设直线的方程,利用韦达定理及条件可得直线恒过定点,则以为直径的圆适合题意,即得.【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论