




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省内丘中学2025届数学高一上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列关系中,正确的是A. B.C. D.2.函数的一部分图像如图所示,则()A. B.C. D.3.已知,则()A.-3 B.-1C.1 D.34.已知角的终边过点,则()A. B.C. D.5.若圆上至少有三个不同的点到直线的距离为,则的取值范围是()A. B.C. D.6.在内,使成立的的取值范围是A. B.C. D.7.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:12456123.13615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)9.设函数满足,当时,,则()A.0 B.C. D.110.命题p:,的否定是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.已知在上是增函数,则的取值范围是___________.13.在平面四边形中,,若,则__________.14.—个几何体的三视图如图所示,则该几何体的体积为__________15.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.16.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数()是偶函数.(1)求的值;(2)设,判断并证明函数在上的单调性;(3)令若对恒成立,求实数的取值范围.18.如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.19.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:时)各分为5组[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定,初中学生平均每人每天课外阅读时间不少于半个小时.若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间,根据以上抽样调查数据,该校是否需要增加初中学生的课外阅读时间?并说明理由.20.已知函数.(1)求函数的最小正周期;(2)求函数的最大值.21.已知全集,集合,集合.(1)若,求;(2)若“”是“”必要不充分条件,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用元素与集合的关系依次对选项进行判断即可【详解】选项A:,错误;选项B,,错误;选项C,,正确;选项D,与是元素与集合的关系,应该满足,故错误;故选C【点睛】本题考查元素与集合的关系,属于基础题2、D【解析】由图可知,,排除选项,由,排除选项,故选.3、D【解析】利用同角三角函数基本关系式中的技巧弦化切求解.【详解】.故选:D【点睛】本题考查了同角三角函数基本关系中的弦化切技巧,属于容易题.4、A【解析】根据三角函数的定义计算可得;【详解】解:因为角终边过点,所以;故选:A5、D【解析】先整理圆的方程为可得圆心和半径,再转化问题为圆心到直线的距离小于等于,进而求解即可【详解】由题,圆标准方程为,所以圆心为,半径,因为圆上至少有三个不同点到直线的距离为,所以,所以圆心到直线的距离小于等于,即,解得,故选:D【点睛】本题考查直线与圆的位置关系的应用,考查圆的一般方程到圆的标准方程的转化,考查数形结合思想6、C【解析】直接画出函数图像得到答案.【详解】画出函数图像,如图所示:根据图像知.故选:.【点睛】本题考查了解三角不等式,画出函数图像是解题的关键.7、A【解析】由菱形和平行四边形的定义可判断.【详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.8、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.9、A【解析】根据给定条件依次计算并借助特殊角的三角函数值求解作答.【详解】因函数满足,且当时,,则,所以.故选:A10、C【解析】根据特称命题的否定是全称命题即可求解.【详解】解:命题p:,的否定是:,,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,根据三角函数的诱导公式进行转化求解即可.详解】,,则,故答案为:.12、【解析】将整理分段函数形式,由在上单调递增,进而可得,即可求解【详解】由题,,显然,在时,单调递增,因为在上单调递增,所以,即,故答案为:【点睛】本题考查已知函数单调性求参数,考查分段函数,考查一次函数的单调性的应用13、##1.5【解析】设,在中,可知,在中,可得,由正弦定理,可得答案.【详解】设,在中,,,,在中,,,,,由正弦定理得:,得,.故答案为:.14、30【解析】由三视图可知这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体长方体的体积为五棱柱的体积是故该几何体的体积为点睛:本题主要考查的知识点是由三视图求面积,体积.本题通过观察三视图这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体,分别求出长方体和五棱柱的体积,然后相加可得答案15、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.16、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调递增函数.见解析(3)【解析】(1)由题意得,推出得,从而有,解出即可;(2)先求出函数的解析式,再根据单调性的性质即可得判断函数的单调性,再利用作差法证明即可;(3),令,换元法得在上恒成立,利用分离变量法求出函数在上的最值,从而可求出的取值范围【详解】解:(1)由是偶函数得,可得,∴,即,得,解得:;(2)由(1)可知,,,和在上单调递增,为在上的单调递增函数,证明:任取,那么,,,,,则,,,即那么,为在上的单调递增函数;(3)由(2)可知,那么,令,则,,,转化为在上恒成立,即在上恒成立,而函数和在上单调递增,则函数在上单调递增,∴,∴,故:实数的取值范围为【点睛】本题主要考查对数型函数的奇偶性与单调性的综合,考查恒成立问题,属于中档题18、(1)见解析;(2);(3)存在,..【解析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出结论试题解析:(1)证明:在中为中点,所以.又侧面底面,平面平面平面,所以平面.(2)解:连接,在直角梯形中,,有且,所以四边形是平行四边形,所以.由(1)知为锐角,所以是异面直线与所成的角,因为,在中,,所以,在中,因为,所以,在中,,所以,所以异面直线与所成的角的余弦值为.(3)解:假设存在点,使得它到平面的距离为.设,则,由(2)得,在中,,所以,由得,所以存在点满足题意,此时.19、(1)720人(2)(3)需要增加,理由见解析【解析】(1)由分层抽样的特点可分别求得抽取的初中生、高中生人数,由频率分布直方图的性质可知初中生、高中生课外阅读时间在,小时内的频率,然后由频数样本容量频率可分别得初中生、高中生课外阅读时间在,小时内的样本学生数,最后将两者相加即可(2)记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,由频数样本容量频率组距频率可分别得初中生、高中生中,阅读时间不足10个小时的学生人数,然后用列举法表示出随机抽取3人的所有可能结果以及事件的结果,从而得(3)同一组中的数据用该组区间中点值作为代表来计算样本中的所有初中生平均每天阅读时间,并与30小时比较大小,若小于30小时,则需要增加,否则不需要增加【小问1详解】由分层抽样知,抽取的初中生有人,高中生有人初中生中,课外阅读时间在,小时内的频率为:,学生人数为人高中生中,课外阅读时间在,小时内的频率为:,学生人数约有人,全校学生中课外阅读时间在,小时内学生总人数为人【小问2详解】记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,初中生中,阅读时间不足10个小时的学生人数为人,高中生中,阅读时间不足10个小时的学生人数为人记这3名初中生为,,,这2名高中生为,,则从阅读时间不足10个小时的样本学生中随机抽取3人,所有可能结果共有10种,即,,,,,,,,,,而事件结果有7种,它们是:,,,,,,,至少抽到2名初中生的概率为【小问3详解】样本中的所有初中生平均每天阅读时间为:(小时),而(小时),,该校需要增加初中学生课外阅读时间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025成都市电子产品代理销售合同
- 2025工程测绘合同范本
- 两类四阶微分方程边值问题解的存在性
- 2025【合同范本】建筑工程设计合同范本
- 校园智慧生活服务平台建设协议
- 《知识产权法学》一万字笔记
- 2025年网络安全工程师考核试题及答案
- 2025年心理学基础知识考试试卷及答案
- 2025年统计学研究生考试试题及答案
- 固体废物堆肥处理技术课件
- 气压传动课件 项目二任务一 冲压机气缸的选择
- 某物业公司小区门禁卡管理制度
- PVC膜生产工艺流程
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 水浒人物宋江介绍课件
- 人教版(PEP)小学英语五年级下册第五单元作业设计
- 河北省邯郸市(2024年-2025年小学四年级语文)部编版小升初模拟((上下)学期)试卷及答案
- 四川省大邑中学2024-2025学年高一新生上学期入学分班质量检测数学试题
- DL∕T 5551-2018 架空输电线路荷载规范
- JGJ202-2010 建筑施工工具式脚手架安全技术规范【清晰版】
- 高考语文各类题型及答题技巧
评论
0/150
提交评论