安徽省池州市 2025届高二数学第一学期期末质量跟踪监视试题含解析_第1页
安徽省池州市 2025届高二数学第一学期期末质量跟踪监视试题含解析_第2页
安徽省池州市 2025届高二数学第一学期期末质量跟踪监视试题含解析_第3页
安徽省池州市 2025届高二数学第一学期期末质量跟踪监视试题含解析_第4页
安徽省池州市 2025届高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省池州市2025届高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知角为第二象限角,,则的值为()A. B.C. D.2.在区间内随机取一个数则该数满足的概率为()A. B.C. D.3.命题“,”的否定是A, B.,C., D.,4.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10 B.30C.40 D.465.若,则()A B.C. D.6.定义焦点相同,且离心率互为倒数的椭圆和双曲线为一对相关曲线.已知,是一对相关曲线的焦点,Р是这对相关曲线在第一象限的交点,则点Р与以为直径的圆的位置关系是()A.在圆外 B.在圆上C.在圆内 D.不确定7.(一)单项选择函数在处的导数等于()A.0 B.C.1 D.e8.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.269.已知二次函数交轴于,两点,交轴于点.若圆过,,三点,则圆的方程是()A. B.C. D.10.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为111.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.5612.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行六面体中,底面是边长为1的正方形,若,且,则的长为_________14.点在以,为焦点的椭圆上运动,则的重心的轨迹方程是___________.15.已知,为双曲线的左、右焦点,过作的垂线分别交双曲线的左、右两支于B,C两点(如图).若,则双曲线的渐近线方程为______16.已知定点,,P是椭圆上的动点,则的的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.18.(12分)已知函数.(1)讨论函数的单调性;(2)若函数有两个不同的零点,求实数的取值范围.19.(12分)已知首项为1的等比数列,满足(1)求数列的通项公式;(2)求数列的前n项和20.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值21.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.22.(10分)求下列函数的导数.(1);(2).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【详解】∵,是第二象限角,∴,∴.故选:C.2、C【解析】求解不等式,利用几何概型的概率计算公式即可容易求得.【详解】求解不等式可得:,由几何概型的概率计算公式可得:在区间内随机取一个数则该数满足的概率为.故选:.3、C【解析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题4、C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C5、D【解析】直接利用向量的坐标运算求解即可【详解】因为,所以,故选:D6、A【解析】设椭圆的长轴长为,椭圆的焦距为,双曲线的实轴长为,根据题意可得,设,根据椭圆与双曲线的定义将分别用表示,设,再根据两点的距离公式将点的坐标用表示,从而可判断出点与圆的位置关系.【详解】解:设椭圆的长轴长为,椭圆的焦距为,双曲线的实轴长为,设椭圆和双曲线的离心率分别为,则,所以,以为直径的圆的方程为,设,则有,所以,设,,所以①,②,则①②得,所以,所以,将代入②得,所以,,则点到圆心的距离为,所以点Р在以为直径的圆外.故选:A.7、B【解析】利用导数公式求解.【详解】因为函数,所以,所以,故选;B8、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A9、C【解析】由已知求得点A、B、C的坐标,则有AB的垂直平分线必过圆心,所以设圆的圆心为,由,可求得圆M的半径和圆心,由此求得圆的方程.【详解】解:由解得或,所以,又令,得,所以,因为圆过,,三点,所以AB的垂直平分线必过圆心,所以设圆的圆心为,所以,即,解得,所以圆心,半径,所以圆的方程是,即,故选:C10、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D11、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B12、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,所以,即,故14、【解析】设出点和三角形的重心,利用重心坐标公式得到点和三角形的重心坐标的关系,,代入椭圆方程即可求得轨迹方程,再利用,,三点不共线得到.【详解】设,,由,得,即,,因为为的重心,所以,,即,,代入,得,即,因为,,三点不共线,所以,则的重心的轨迹方程是.故答案:.15、【解析】根据双曲线的定义先计算出,,注意到图中渐近线,于是利用两种不同的表示法列方程求解.【详解】,则,由双曲线的定义及在右支上,,又在左支上,则,则,在中,由余弦定理,,而图中渐近线,于是,得,于是,不妨令,化简得,解得,渐近线就为:.故答案为:.16、##【解析】根据椭圆的定义可知,化简并结合基本不等式可求的的最小值.【详解】由题可知:点,是椭圆的焦点,所以,所以,即,当且仅当时等号成立,即时等号成立.所以的最小值为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解析】(1),进而分,,三种情况讨论求解即可;(2)由题意知在上恒成立,故令,再根据导数研究函数的最小值,注意到使,进而结合函数隐零点求解即可.【小问1详解】解:①,在上单调增;②,令,单调减单调增;③,单调增单调减.综上,当时,在上单调增;当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】解:由题意知在上恒成立,令,,单调递增∵,∴使得,即单调递减;单调递增,令,则在上单调增,∴实数的取值范围是18、(1)答案见解析(2)【解析】(1)求函数的定义域及导函数,根据导数与函数的单调性关系判断函数的单调性;(2)结合已知条件,根据函数的单调性,极值结合零点存在性定理列不等式求实数的取值范围.【小问1详解】的定义域为,当时,恒成立,上单调递增,当时,在递减,在递增【小问2详解】当时,恒成立,上单调递增,所以至多存一个零点,不符题意,故舍去.当时,在递减,在递增;所以有极小值为构造函数,恒成立,所以在单调递减,注意到①当时,,则函数至多只有一个零点,不符题意,舍去.②当时,函数图象连续不间断,的极小值为,又函数在单调递减,所以在上存在唯一一个零点;,令,构造函数,恒成立.在单调递增,所以,即,所以函数在单调递增,所以在上存在唯一一个零点;当时,函数怡有两个零点,即在上各有一个零点.综上,函数有两个不同的零点,实数的取值范围为.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.19、(1)(2)【解析】(1)根据已知条件求得数列的公比,由此求得.(2)利用错位相减求和法求得.【小问1详解】设等比数列的公比为,由,可得.故数列是以1为首项,3为公比的等比数列,所以【小问2详解】由(1)得,,①,②①②,得所以20、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0=-2+1y0=-2,所以切点的坐标为或【小问2详解】解:圆C:的圆心(1,0),半径r=2,设,由题意可得,由四边形APCQ为正方形,可得|AC|=,即,由题意直线l⊥AC,圆C:(x﹣1)2+y2=4,则圆心(1,0)到直线的距离,可得,m>0,解得m=3.21、(1)证明见解析;(2)证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论