2025届甘肃省白银市靖远第一中学数学高一上期末综合测试模拟试题含解析_第1页
2025届甘肃省白银市靖远第一中学数学高一上期末综合测试模拟试题含解析_第2页
2025届甘肃省白银市靖远第一中学数学高一上期末综合测试模拟试题含解析_第3页
2025届甘肃省白银市靖远第一中学数学高一上期末综合测试模拟试题含解析_第4页
2025届甘肃省白银市靖远第一中学数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省白银市靖远第一中学数学高一上期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数满足,且当时,.若关于的方程在上至少有两个实数解,则实数的取值范围为A. B.C. D.2.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.3.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.4.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.35.的分数指数幂表示为()A. B.C. D.都不对6.若函数在单调递增,则实数a的取值范围为()A. B.C. D.7.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解9.函数的图象的一个对称中心是()A B.C. D.10.已知,则的值为()A.-4 B.C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解在内,则的取值范围是___________.12.已知扇形的圆心角为,其弧长是其半径的2倍,则__________13.已知函数是定义在上且以3为周期的奇函数,当时,,则时,__________,函数在区间上的零点个数为__________14.在函数的图像上,有______个横、纵坐标均为整数的点15.函数(且)的图象恒过定点_________16.若函数,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值18.已知,且的最小正周期为.(1)求关于x的不等式的解集;(2)求在上的单调区间.19.已知定义域为的奇函数.(1)求的值;(2)用函数单调性的定义证明函数在上是增函数.20.已知函数,(1)求的解集;(2)当时,若方程有三个不同的实数解,求实数k的取值范围21.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】原问题等价于函数与的图象至少有两个交点【详解】解:关于的方程在上至少有两个实数解,等价于函数与的图象至少有两个交点,因为函数满足,且当时,,所以当时,,时,,时,,所以的大致图象如图所示:因为表示恒过定点,斜率为的直线,所以要使两个函数图象至少有两个交点,由图可知只需,即,故选:C2、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,

这个c也就是方程f(x)=0的根.由此可判断根所在区间.3、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围4、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题5、B【解析】直接由根式化为分数指数幂即可【详解】解:故选:B【点睛】本题考查了根式与分数指数幂的互化,属基础题.6、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D7、D【解析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D8、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.9、B【解析】利用正弦函数的对称性质可知,,从而可得函数的图象的对称中心为,再赋值即可得答案【详解】令,,解得:,.所以函数的图象的对称中心为,.当时,就是函数的图象的一个对称中心,故选:B.10、A【解析】由题,解得.故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先令,按照单调性求出函数的值域,写出的取值范围即可.【详解】令,显然该函数增函数,,值域为,故.故答案为:.12、-1【解析】由已知得,所以则,故答案.13、①.②.5【解析】(1)当时,,∴,又函数是奇函数,∴故当时,(2)当时,令,得,即,解得,即,又函数为奇函数,故可得,且∵函数是以3为周期的函数,∴,,又,∴综上可得函数在区间上的零点为,共5个答案:,514、3【解析】由题可得函数为减函数,利用赋值法结合条件及函数的性质即得.【详解】因为,所以函数在R上单调递减,又,,,,且当时,,当时,令,则,综上,函数的图像上,有3个横、纵坐标均为整数的点故答案为:3.15、【解析】令对数的真数为,即可求出定点的横坐标,再代入求值即可;【详解】解:因为函数(且),令,解得,所以,即函数恒过点;故答案为:16、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),(3)最大值为,最小值为【解析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.18、(1)(2)单调递增区间为和,单调递减区间为【解析】(1)首先利用两角差的正弦公式及二倍角公式将函数化简,再根据函数的最小正周期求出,即可得到函数解析式,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的范围,再跟正弦函数的性质计算可得.【小问1详解】解:因为所以即,由及的最小正周期为,所以,解得;由得,,解得,所求不等式的解集为小问2详解】解:,,在和上递增,在上递减,令,解得;令,解得;令,解得;所以在上的单调递增区间为和,单调递减区间为;19、(1)2;(2)见解析【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值;(2)按按取点,作差,变形,判断的过程来即可试题解析:(1)∵是定义域为的奇函数,∴,即,∴,即解得:.(2)由(1)知,,任取,且,则由,可知:∴,,,∴,即.∴函数在上是增函数.点晴:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.20、(1)答案见解析(2)【解析】(1),然后对和的大小关系进行讨论,利用一元二次不等式的解法即可得答案;(2)令,则,解得或.当时,有一解;由题意,当时,必有两解,数形结合即可求解.【小问1详解】解:,①当时,不等式的解集为;②当时,不等式的解集为;③当时,不等式的解集为【小问2详解】解:当时,令,则,解得或,当时,,得,所以当时,要使方程有三个不同的实数解,则必须有有两个解,即与的图象有2个不同的交点,由图可知,解得,所以实数k的取值范围为.21、(1)1(2)(3)存在,【解析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再利用换元法,结合二次方程根的关系求解即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论