版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常熟市第一中学2025届数学高二上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列满足,则数列的通项公式为()A. B.C. D.2.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm),则此构件的表面积为()A. B.C. D.3.如图所示,在中,,,,AD为BC边上的高,;若,则的值为()A. B.C. D.4.用数学归纳法证明时,第一步应验证不等式()A. B.C. D.5.已知双曲线上点到点的距离为15,则点到点的距离为()A.9 B.6C.6或36 D.9或216.设双曲线:的左,右焦点分别为,,过的直线与双曲线的右支交于A,B两点,若,则双曲线的离心率为()A.4 B.2C. D.7.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.8.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.109.在长方体,,则异面直线与所成角的余弦值是()A. B.C. D.10.已知梯形中,,且,则的值为()A. B.C. D.11.如图,在空间四边形中,()A. B.C. D.12.如图,空间四边形中,,,,且,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设数列的前n项和为,且是6和的等差中项,若对任意的,都有,则的最小值为________14.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.15.已知直线与圆:交于、两点,则的面积为______.16.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,P为两曲线的一个公共点,且(O为坐标原点).若,则的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆(1)若直线与圆C相交于A、B两点,当弦长最短时,求直线l的方程;(2)若与圆C相外切且与y轴相切的圆的圆心记为D,求D点的轨迹方程18.(12分)如图,点是曲线上的动点(点在轴左侧),以点为顶点作等腰梯形,使点在此曲线上,点在轴上.设,等腰梯的面积为.(1)写出函数的解析式,并求出函数的定义域;(2)当为何值时,等腰梯形的面积最大?求出最大面积.19.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值20.(12分)已知函数f(x)=ax-2lnx(1)讨论f(x)的单调性;(2)设函数g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范围21.(12分)已知是奇函数.(1)求的值;(2)若,求的值22.(10分)在平面直角坐标系中,椭圆的离心率为,且点在椭圆C上(1)求椭圆C的标准方程;(2)过点的直线与椭圆C交于A,B两点,试探究直线上是否存在定点Q,使得为定值.若存在,求出定点Q的坐标及实数的值;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D2、B【解析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.3、B【解析】根据题意求得,化简得到,结合,求得的值,即可求解.【详解】在中,,,,AD为BC边上的高,可得,由又因为,所以,所以.故选:B.4、B【解析】取即可得到第一步应验证不等式.【详解】由题意得,当时,不等式为故选:B5、D【解析】利用双曲线的定义可得答案.【详解】设,,,为双曲线的焦点,则由双曲线定义,知,而所以或21故选:D.6、B【解析】根据双曲线的定义及,求出,,,,再利用余弦定理计算可得;【详解】解:依题意可知、,又且,所以,,,,则,且,即,即,所以离心率.故选:B7、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.8、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题9、A【解析】在长方体中建立空间直角坐标系,求出相关点的坐标,进而求得向量,的坐标,利用向量的夹角公式即可求得答案.详解】如图,由题意可知DA,DC,两两垂直,则以D为原点,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系.设,则,,,,,,从而,故异面直线与所成角的余弦值是,故选:A.10、D【解析】根据共线定理、平面向量的加法和减法法则,即可求得,进而求出的值,即可求出结果.【详解】因为,所以又,所以.故选:D.11、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.12、C【解析】根据空间向量的线性运算即可求解.【详解】因为,又因为,,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据和项与通项关系得通项公式,再根据等比数列求和公式得,再根据函数单调性得取值范围,即得取值范围,解得结果.【详解】因为是6和的等差中项,所以当时,当时,因此当为偶数时,当为奇数时,因此因为在上单调递增,所以故答案为:【点睛】本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.14、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.15、2【解析】用已知直线方程和圆方程联立,可以求出交点,再分析三角形的形状,即可求出三角形的面积.【详解】由圆C方程:可得:;即圆心C的坐标为(0,-1),半径r=2;联立方程得交点,如下图:可知轴,∴是以为直角的直角三角形,,故答案为:2.16、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求出直线过的定点,再根据弦长|AB|最短时,求解.(2)用直译法求解【小问1详解】直线即,所以直线过定点.当弦长|AB|最短时,因为直线PC的斜率所以此时直线的斜率所以当弦长|AB|最短时,求直线的方程为,即【小问2详解】设,易知圆心D在轴上方,圆D半径为因为圆与圆外切,所以即整理得点的轨迹方程为18、(1);(2)当时取到最大值,【解析】(1)设点,则根据题意得,,故;(2)令,研究函数的单调性,进而得的最值,进而得的最大值.【详解】解:(1)根据题意,设点,由是曲线上的动点得:,由于椭圆与轴交点为,故,所以即:(2)结合(1),对两边平方得:,令,则,所以当时,,当时,,所以在区间单调递增,在上单调递减,所以在处取到最大值,,所以当时,取到最大值,.【点睛】本题考查利用导数研究实际问题,考查数学应用能力与计算能力,是中档题.19、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0=-2+1y0=-2,所以切点的坐标为或【小问2详解】解:圆C:的圆心(1,0),半径r=2,设,由题意可得,由四边形APCQ为正方形,可得|AC|=,即,由题意直线l⊥AC,圆C:(x﹣1)2+y2=4,则圆心(1,0)到直线的距离,可得,m>0,解得m=3.20、(1)答案见解析;(2).【解析】(1)根据实数a的正负性,结合导数的性质分类讨论求解即可;(2)利用常变量分离法,通过构造函数,利用导数的性质进行求解即可.【小问1详解】当a≤0时,在(0,+∞)上恒成立;当a>0时,令得;令得;综上:a≤0时f(x)在(0,+∞)上单调递减;a>0时,f(x)在上单调递减,在上单调递增;【小问2详解】由题意知ax-2lnx≤x-2在(0,+∞)上有解则ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗极大值↘所以,因此有所以a的取值范围为:【点睛】关键点睛:运用常变量分离法利用导数的性质是解题的关键.21、(1);(2)4【解析】(1)根据奇函数的定义,代入化简得,进而可得的值;(2)设,可得,根据奇函数的性质得,进而可得结果.【详解】解:(1)因为是奇函数,所以,即,整理得,又,所以(2)设,因为,所以因为是奇函数,所以所以【点睛】本题主要考查了已知函数的奇偶性求参数的值,根据函数的奇偶性求函数的值,属于中档题.22、(1)(2)存在,定点的坐标为,实数的值为【解析】(1)由题意可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 色彩秘境模板
- 2024年项目委托管理合同标的明细
- 外国人来华工作聘用合同范本(2篇)
- 基础设施合作项目协议书
- 大型项目资产管理合同
- 专项知识产权保密协议:2024版格式样本版
- 2024建筑工程泥工施工劳务合同
- 13《桥》说课稿-2024-2025学年六年级语文上册统编版
- 2024物流运输合同模板
- 张家港房屋租赁合同正规文本范本
- 机关事业单位财务管理制度(六篇)
- 仓库仓储安全管理培训课件模板
- 风力发电场运行维护手册
- 人教版六年级上册数学第八单元数学广角数与形单元试题含答案
- 叉车租赁合同模板
- 河道旅游开发合同
- 住房公积金稽核审计工作方案例文(4篇)
- 口腔门诊医疗风险规避
- 情人合同范例
- 建筑公司劳务合作协议书范本
- 安徽省合肥市2023-2024学年高一上学期物理期末试卷(含答案)
评论
0/150
提交评论