版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省仁寿县铧强中学2025届数学高二上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(如图1).其中“100”的两个“0”设计为两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切(如图2).已知,则由其中一个圆心向另一个小圆引的切线长与两大圆的公共弦长之比为()A. B.3C. D.2.设是等差数列,是其公差,是其前n项的和.若,,则下列结论不正确的是()A. B.C. D.与均为的最大值3.椭圆的焦点坐标为()A., B.,C., D.,4.化学中,将构成粒子(原子、离子或分子)在空间按一定规律呈周期性重复排列构成的固体物质称为晶体.在结构化学中,可将晶体结构截分为一个个包含等同内容的基本单位,这个基本单位叫做晶胞.已知钙、钛、氧可以形成如图所示的立方体晶胞(其中Ti原子位于晶胞的中心,Ca原子均在顶点位置,O原子位于棱的中点).则图中原子连线BF与所成角的余弦值为()A. B.C. D.5.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或6.已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1 B.2C.3 D.47.已知函数满足对于恒成立,设则下列不等关系正确是()A. B.C. D.8.已知点,分别在双曲线的左右两支上,且关于原点对称,的左焦点为,直线与的左支相交于另一点,若,且,则的离心率为()A B.C. D.9.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3C.6 D.10.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.11.已知等比数列的前项和为,若公比,则=()A. B.C. D.12.若是双曲线的左右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为,若,则该双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________14.从甲、乙、丙、丁4位同学中,选出2位同学分别担任正、副班长的选法数可以用表示为____________.15.设f(x)=xlnx,若f′(x0)=2,则x0=________16.已知定点,动点分别在直线和上运动,则的周长取最小值时点的坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面,,,,,为上一点,且.请用空间向量知识解答下列问题:(1)求证:平面;(2)求平面与平面夹角的大小.18.(12分)已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值19.(12分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.20.(12分)“中山桥”是位于兰州市中心,横跨黄河之上的一座百年老桥,如图①,桥上有五个拱形桥架紧密相连,每个桥架的内部有一个水平横梁和八个与横梁垂直的立柱,气势宏伟,素有“天下黄河第一桥”之称.如图②,一个拱形桥架可以近似看作是由等腰梯形和其上方的抛物线(部分)组成,建立如图所示的平面直角坐标系,已知,,,,立柱.(1)求立柱及横梁的长;(2)求抛物线的方程和桥梁的拱高.21.(12分)已知直线过坐标原点,圆的方程为(1)当直线的斜率为时,求与圆相交所得的弦长;(2)设直线与圆交于两点,,且为的中点,求直线的方程22.(10分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】作出图形,进而根据勾股定理并结合圆与圆的位置关系即可求得答案.【详解】如示意图,由题意,,则,又,,所以,所以.故选:C.2、C【解析】由已知条件可以得出,,,即可得公差,再利用等差数列的性质以及前n项的和的性质可判断每个选项的正误,进而可得正确选项.【详解】由可得,由可得,故选项B正确;由可得,因为公差,故选项A正确,,所以,故选项C不正确;由于是等差数列,公差,,,,所以都是的最大值,故选项D正确;所以选项C不正确,故选:C3、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.4、C【解析】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,求出的值,即可得到答案;【详解】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,则,,,,连线与所成角的余弦值为故选:C.5、D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反射光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.6、B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B7、A【解析】由条件可得函数为上的增函数,构造函数,利用函数单调性比较的大小,再根据函数的单调性确定各选项的对错.【详解】设,则,∵,∴,∴函数在上为增函数,∵,∴,故,所以,C错,令(),则,当时,,当时,∴函数在区间上为增函数,在区间上为减函数,又,∴,∴,即,∴,故,所以,D错,,故,所以,A对,,故,所以,B错,故选:A.8、D【解析】根据双曲线的定义及,,应用勾股定理,可得关系,即可求解.【详解】设双曲线的右焦点为,连接,,,如图:根据双曲线的对称性及可知,四边形为矩形.设因为,所以,又,所以,,在和中,,①,②由②化简可得,③把③代入①可得:,所以,故选:D【点睛】本题主要考查了双曲线的定义,双曲线的简单几何性质,勾股定理,属于难题.9、C【解析】利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时取等号,的最小值为6,故选:C【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力10、D【解析】由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.11、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.12、D【解析】根据已知条件,找出,的齐次关系式即可得到双曲线的离心率.【详解】由题意得,,,在中,,因,故,在,由余弦定理得,即,计算得,故.故选:D.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合转化为a,c的齐次式,然后等式(不等式)两边分别除以a或转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:14、【解析】由题意知:从4为同学中选出2位进行排列,即可写出表示方式.【详解】1、从4位同学选出2位同学,2、把所选出的2位同学任意安排为正、副班长,∴选法数为.故答案为:.15、【解析】f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e16、【解析】作点分别关于直线和的对称点,根据对称性即可求出三角形周长的最小值,利用三点共线求出的坐标.【详解】如图所示:定点关于函数对称点,关于轴的对称点,当与直线和的交点分别为时,此时的周长取最小值,且最小值为此时点的坐标满足,解得,即点.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)以为原点,、、分别为轴、轴、轴建立空间直角坐标系,证明出,,结合线面垂直的判定定理可证得结论成立;(2)利用空间向量法可求得平面与平面夹角的大小.【小问1详解】证明:底面,,故以为原点,、、分别为轴、轴、轴建立如图所示的空间直角坐标系,则、、、、、,所以,,,,则,,即,,又,所以,平面.【小问2详解】解:知,,,设平面的法向量为,则,,即,令,可得,设平面的法向量为,由,,即,令,可得,,因此,平面与平面夹角的大小为.18、(1)(2)10【解析】(1)设等差数列的公差为d,利用已知建立方程组,解之可求得数列的通项公式;(2)利用等差数列的前项和公式,化简即可求解.【小问1详解】解:设等差数列的公差为d,由已知,,得,解得,则;小问2详解】解:由(1)得,则由,得或(舍去),所以的值为10.19、(1)14海里小时;(2).【解析】(1)由题意知,,,.在△中,利用余弦定理求出,进而求出渔船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小问1详解】(1)依题意,,,,.在△中,由余弦定理,得.解得.故渔船甲的速度为海里小时.即渔船甲的速度为14海里小时.【小问2详解】在△中,因为,,,,由正弦定理,得,即.值为.20、(1),(2),【解析】(1)根据梯形的几何性质,即可求解;(2)表示出M,N的坐标,代入抛物线方程中,结合条件解得p值,继而求得拱高.【小问1详解】由题意,知,因为ABFM是等腰梯形,由对称性知:,所以,【小问2详解】由(1)知,所以点M的横坐标为-18,则N的横坐标为-(18-5)=-13.设点M,N的纵坐标分别为y1,y2,由图形,知设抛物线的方程为,,两式相减,得2p(y2-y1)=182-132=155,解得:2p=100故抛物线的方程为x2=-100y.因此,当x=-18时,所以桥梁的拱高OH=3.24+4=7.24m.21、(1)(2)或【解析】(1)、由题意可知直线的方程为,圆的圆心为,半径为,求出圆心到直线的距离,根据勾股定理即可求出与圆相交所得的弦长;(2)、设,因为为的中点,所以,又因为,均在圆上,将,坐标代入圆方程,即可求出点坐标,即可求出直线的方程【小问1详解】由题意:直线过坐标原点,且直线的斜率为直线的方程为,圆的方程为圆的方程可化为:圆的圆心为,半径为圆的圆心到直线:的距离为,与圆相交所得的弦长为【小问2详解】设,为的中点,又,均在圆上,或直线方程或22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国胸腺肽α1行业投资前景及策略咨询研究报告
- 2024至2030年中国突波吸收器行业投资前景及策略咨询研究报告
- 2024至2030年中国砂带磨样机行业投资前景及策略咨询研究报告
- 2024至2030年中国双把单孔脸盆龙头行业投资前景及策略咨询研究报告
- 2024至2030年中国去蜡去漆剂行业投资前景及策略咨询研究报告
- 2024至2030年黄花松茸项目投资价值分析报告
- 投资合作协议合同书(2025年)
- 出版行业IP授权合同的市场趋势
- 2025有关监理合同
- 三轮摩托车买卖合同
- 数字媒体艺术导论课件游戏
- 极狐旗舰店年度活动营销规划
- 2023年环境保护部南京环境科学研究所招聘笔试参考题库附带答案详解
- 绘本故事62蚯蚓的日记
- 超星尔雅学习通《西厢记》赏析(首都师范大学)网课章节测试答案
- 新概念英语第三册课文(全60课)
- 浙江省某住宅楼质量通病防治措施
- YY/T 0506.1-2023医用手术单、手术衣和洁净服第1部分:通用要求
- TCIIA 020-2022 科学数据 安全传输技术要求
- GB 7101-2022食品安全国家标准饮料
- 经济思想史 全套讲义
评论
0/150
提交评论