版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1单元二次函数(易错40题12个考点)一.二次函数的定义(共1小题)1.已知y=(m+2)x|m|+2是y关于x的二次函数,那么m的值为2.【答案】2.【解答】解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故答案为:2.二.二次函数的图象(共2小题)2.在同一平面直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.【答案】D【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数开口向上,一次函数经过一、三象限,故C选项错误;当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;故选:D.3.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+=0的解为x=﹣3.【答案】见试题解答内容【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为关于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.三.二次函数的性质(共2小题)4.下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上 B.开口方向向上 C.对称轴是直线x=1 D.与直线y=3x有两个交点【答案】D【解答】解:A、把x=0代入y=3(x+1)(2﹣x),得y=6≠2,∴A错误;B、化简二次函数:y=﹣3x2+3x+6,∵a=﹣3<0,∴二次函数的图象开口方向向下,∴B错误;C、∵二次函数对称轴是直线x=﹣=,∴C错误;D、∵3(x+1)(2﹣x)=3x,∴﹣3x2+3x+6=3x,∴﹣3x2+6=0,∵b2﹣4ac=72>0,∴二次函数y=3(x+1)(2﹣x)的图象与直线y=3x有两个交点,∴D正确;故选:D.5.抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A.m≤2或m≥3 B.m≤3或m≥4 C.2<m<3 D.3<m<4【答案】B【解答】解:把A(4,4)代入抛物线y=ax2+bx+3得:16a+4b+3=4,∴16a+4b=1,∴4a+b=,∵对称轴x=﹣,B(2,m),且点B到抛物线对称轴的距离记为d,满足0<d≤1,∴∴,∴||≤1,∴或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m2(2a+b)+3=m2(2a+﹣4a)+3=m﹣4a=m,a=,∴或,∴m≤3或m≥4.故选:B.四.二次函数图象与系数的关系(共4小题)6.已知b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示:根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2【答案】B【解答】解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣>0,a>0,则b<0,与b>0矛盾;故第四个图正确.由于第四个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向下,a=﹣1.故选:B.7.已知二次函数y=x2+2x+2m﹣1的图象只经过三个象限,则m的取值范围是()A.m<1 B.m≥ C.<m<1 D.≤m<1【答案】D【解答】解:∵二次函数y=x2+2x+2m﹣1的图象只经过三个象限,∴开口方向向上,其对称轴为x=﹣1,则<0,2m﹣1≥0,解得≤m<1.如图:故选:D.8.已知抛物线y=(x﹣3)2﹣1与y轴交于点C,则点C的坐标为(0,8).【答案】C(0,8).【解答】解:由题意,∵抛物线y=(x﹣3)2﹣1与y轴交于点C,∴令x=0,则y=8.∴C(0,8).故答案为:(0,8).9.如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是①③⑤.(填写正确结论的序号)【答案】见试题解答内容【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是直线x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(,0),当x=﹣时,y=0,即,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,∴25a﹣20a+4c=0,∴5a+4c=0,即c=﹣a;∵b=2a,a+b+c<0,∴,即3b+2c<0,故④错误;由二次函数的性质可知,当x=﹣1时,y取最大值,∴对任意﹣m的值,满足a﹣b+c≥am2﹣bm+c,整理得,a﹣b≥m(am﹣b);故⑤正确;故答案为:①③⑤.五.二次函数图象上点的坐标特征(共2小题)10.已知抛物线y=ax2+bx+c(a≠0)经过不同的两点A(2﹣m,n),B(m,n),下列说法正确的是()A.若m>2时都有n>c,则a<0 B.若m>1时都有n<c,则a<0 C.若m<0时都有n>c,则a>0 D.若m<0时都有n<c,则a>0【答案】C【解答】解:∵抛物线y=ax2+bx+c经过A(2﹣m,n),B(m,n)两点,∴抛物线的对称轴为直线x==1.对于A选项,若m>2时,∴2﹣m<0<1.又n>c,∴此时,y随x的增大而减小.∴抛物线开口向上.∴a>0,故A不符合题意.对于B选项,若m>1时,∴0<1<m.此时(0,c)关于对称轴对称的点为(2,c),若n<c,∴a>0或a<0.∴选项B不符合题意.若m<0时,∴m<0<1.又n>c,∴此时,y随x的增大而减小.∴抛物线开口向上.∴a>0,故C符合题意.若m<0时,∴m<0<1.又n<c,∴此时,y随x的增大而增大.∴抛物线开口向下.∴a<0,故D不符合题意.故选:C.11.已知点(﹣3,y1)、(﹣1,y2)、(1,y3)在下列某一函数图象上,且y3<y1<y2,那么这个函数是()A.y=3x B.y=3x2 C.y= D.y=﹣【答案】D【解答】解:A.y=3x,因为3>0,所以y随x的增大而增大,所以y1<y2<y3,不符合题意;B.y=3x2,当x=1和x=﹣1时,y相等,即y3=y2,故不符合题意;C.y=,当x<0时,y随x的增大而减小,x>0时,y随x的增大而减小,所以y2<y1<y3,不符合题意;D.y=﹣,当x<0时,y随x的增大而增大,x>0时,y随x的增大而增大,所以y3<y1<y2,符合题意;故选:D.六.二次函数的最值(共4小题)12.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和5【答案】B【解答】解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.13.当1≤x≤3时,二次函数y=x2﹣2ax+3的最小值为﹣1,则a的值为()A.2 B.±2 C.2或 D.2或【答案】A【解答】解:y=x2﹣2ax+3=(x﹣a)2+3﹣a2.抛物线开口向上,对称轴为直线x=a.∴当a≤1时,若1≤x≤3时,y随x的增大而增大,当x=1时,y有最小值=1﹣2a+3=4﹣2a,∴4﹣2a=﹣1,∴a=,不合题意,舍去.当1<a≤3时,x=a,y有最小值3﹣a2.∴3﹣a2=﹣1.∴a2=4,∵1≤a≤3,∴a=2.当a≥3时,若1≤x≤3,y随x的增大而减小.∴当x=3时,y有最小值=9﹣6a+3=12﹣6a.∴12﹣6a=﹣1.∴a=.∵a≥3.∴不合题意,舍去.综上:a=2.故选A.14.二次函数y=ax2+4x+a的最大值是3,则a的值是﹣1.【答案】见试题解答内容【解答】解:由题意得,=3,整理得,a2﹣3a﹣4=0,解得a1=4,a2=﹣1,∵二次函数有最大值,∴a<0,∴a=﹣1.故答案为:﹣1.15.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.【答案】见试题解答内容【解答】解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入s=x2+8y2得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.七.二次函数的三种形式(共1小题)16.把二次函数y=﹣2x2﹣4x+5用配方法化成y=a(x﹣h)2+k的形式是y=﹣2(x+1)2+7.【答案】y=﹣2(x+1)2+7.【解答】解:y=﹣2x2﹣4x+5=﹣2(x2+2x+1﹣1)+5=﹣2(x2+2x+1)+2+5=﹣2(x+1)2+7,故答案为:y=﹣2(x+1)2+7.八.抛物线与x轴的交点(共7小题)17.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.﹣8 B.8 C.±8 D.6【答案】B【解答】解:由图可知,抛物线与x轴只有一个交点,所以,Δ=m2﹣4×2×8=0,解得m=±8,∵对称轴为直线x=﹣<0,∴m>0,∴m的值为8.故选:B.18.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12 B.﹣或2 C.﹣12或2 D.﹣或﹣12【答案】A【解答】解:如图所示,过点B的直线y=2x+b与新图象有三个公共点,将直线向下平移到恰在点C处相切,此时与新图象也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,△=49﹣4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.19.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3 B.k<4且k≠3 C.k<4 D.k≤4【答案】D【解答】解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当22﹣4(k﹣3)≥0,k≤4即k≤4时,函数的图象与x轴有交点.综上k的取值范围是k≤4.故选:D.20.如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为()A.﹣4,3 B.﹣5,2 C.﹣2,1 D.﹣3,2【答案】C【解答】解:把B(1,1)代入y=ax2,得a=1,把A(﹣2,4),B(1,1)代入y=bx+c,得,解得:,关于x的方程化为x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,故选:C.21.抛物线y=9x2﹣px+4与x轴只有一个公共点,则p的值是±12.【答案】见试题解答内容【解答】解:根据题意:p2﹣4×9×4=0,解得p=±12.22.若二次函数y=2x2﹣x+k的图象与x轴有两个公共点,则k的取值范围是k<.【答案】k<.【解答】解:∵二次函数y=2x2﹣x+k的图象与x轴有两个公共点,∴(﹣1)2﹣4×2k>0,解得k<,故答案为:k<.23.已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在抛物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【答案】(1)﹣3;(2)P(2,﹣5)或P(﹣2,﹣5).【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.即抛物线y=x2+3k与x轴有两个交点.∴b2﹣4ac>0,即﹣12k>0,也就是k<0,又k1=﹣3,k2=2,∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在抛物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).九.二次函数与不等式(组)(共3小题)24.如图,二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,0),点B(m,0),点C(0,﹣m),其中2<m<3,下列结论:①2a+b>0,②2a+c<0,③方程ax2+bx+c=﹣m有两个不相等的实数根,④不等式ax2+(b﹣1)x<0的解集为0<x<m,其中正确结论的个数为()A.1 B.2 C.3 D.4【答案】D【解答】解:①∵二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,0),点B(m,0),∴二次函数y=ax2+bx+c(a>0)的图象的对称轴是直线:x=,∵2<m<3,∴1<﹣1+m<2,∴<<1,∴<<1,∵<1,a>0,∴2a+b>0,故①正确;②把点A(﹣1,0)代入y=ax2+bx+c中可得:a﹣b+c=0,∴b=a+c,由①得:>,∵a>0,∴a+b<0,∴a+a+c<0,∴2a+c<0,故②正确;③由图可知:直线y=﹣m与二次函数y=ax2+bx+c的图象抛物线有两个交点,∴方程ax2+bx+c=﹣m有两个不相等的实数根,故③正确;④∵二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,0),点B(m,0),∴y=a(x+1)(x﹣m)=ax2﹣amx+ax﹣am,∵二次函数y=ax2+bx+c(a>0)的图象经过点C(0,﹣m),∴﹣am=﹣m,∴a=1,二次函数y=ax2+(b﹣1)x的对称轴为直线:x=,把x=0代入二次函数y=ax2+(b﹣1)x中可得:y=0,∴二次函数y=ax2+(b﹣1)x的图象与x轴的交点为:(0,0),设二次函数y=ax2+(b﹣1)x的图象与x轴的另一个交点为(n,0),∴=,∴n==1﹣b,∵不等式ax2+(b﹣1)x<0的解集为0<x<n,∴不等式ax2+(b﹣1)x<0的解集为0<x<,∵二次函数y=ax2+bx+c(a>0)的图象的对称轴是直线:x=,∴=,∴m==1﹣b,∴不等式ax2+(b﹣1)x<0的解集为0<x<m,故④正确,所以:正确结论的个数有4个,故选:D.25.如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c<n的解集是﹣3<x<1.【答案】见试题解答内容【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当﹣3<x<1时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c<n的解集是﹣3<x<1.故答案为﹣3<x<1.26.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的是①②④.【答案】见试题解答内容【解答】解:由图象知,抛物线与x轴有两个不同的交点,只是左边那个没画出来而已,从而由二次函数与一元二次方程的关系可知,Δ=b2﹣4ac>0,从而b2>4ac,故①正确;已知该抛物线是开口向上,顶点为(﹣3,﹣6),故ax2+bx+c≥﹣6正确,从而②正确;由抛物线的对称轴为x=﹣3,点(﹣2,m),(﹣5,n)在抛物线上,则点(﹣2,m)离对称轴的距离为1,而点(5,n)离抛物线的距离为2,开口向上时,离对称轴越远,函数值越大,从而m<n,故③错误;由图象可知,x=﹣1为关于x的一元二次方程ax2+bx+c=﹣4的一个根,由二次函数的对称性,可知﹣5为另一个根,从而④正确;、综上,正确的是①②④.故答案为:①②④.一十.二次函数的应用(共9小题)27.飞机着陆后滑行的距离y(单位:米)关于滑行时间t(单位,秒)的函数解析式是.在飞机着陆滑行中,最后6秒滑行的距离为()米.A.24 B.36 C.48 D.54【答案】D【解答】解:当y取得最大值时,飞机停下来,则y=﹣1.5t2+60t=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=20﹣6=14时,y=546,所以600﹣546=54(米)故选:D.28.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点4m.【答案】8.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.29.如图①,一个可调节高度的喷灌架喷射出的水流可以近似地看成抛物线.图②是喷射出的水流在平面直角坐标系中的示意图,其中喷灌架置于点O处,喷水头的高度(喷水头距喷灌架底部的距离)设置的是1米,当喷射出的水流距离喷水头水平距离为8米时,达到最大高度5米.(1)求水流运行轨迹的函数解析式;(2)若在距喷灌架12米处有一棵3.5米高的果树,问:水流是否会碰到这棵果树?请通过计算说明.【答案】(1)抛物线为:y=﹣(x﹣8)2+5.(2)不能,理由见解答部分.【解答】解:(1)由题可知:抛物线的顶点为(8,5),设水流形成的抛物线为y=a(x﹣8)2+5,将点(0,1)代入可得a=﹣,∴抛物线为:y=﹣(x﹣8)2+5.(2)不能,理由如下:当x=12时,y=﹣(12﹣8)2+5=4>3.5,∴水流不能碰到这棵果树.30.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.解答以下问题(1)小球从飞出到落地要用多少时间?(2)小球飞行的最大高度是多少?此时需要多少飞行时间?【答案】见试题解答内容【解答】解:(1)令h=20t﹣5t2=0解得t1=0(舍去),t2=4∴小球从飞出到落地要用4s(2)由配方法得y=20t﹣5t2=﹣5(t﹣2)2+20∵a=﹣5<0∴小球飞行的最大高度是20m,此时需要飞行2s.31.某公园要修建一个圆形喷水池,在池中心竖直安装一根水管,水管OA长2.25m.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.(1)建立如图所示平面直角坐标系,求抛物线(第一象限部分)的解析式;(2)不考虑其它因素,水池的直径至少要多少米才能使喷出的水流不落到池外?(3)实际施工时,经测量,水池的最大半径只有2.5m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.【答案】(1)抛物线的解析式为:y=﹣(x﹣1)2+3.(2)水池的直径至少要6米才能使喷出的水流不落到池外.(3)调整后水管的最大长度米.【解答】解:(1)由题意可知,抛物线的顶点坐标为(1,3),∴设抛物线的解析式为:y=a(x﹣1)2+3,将(0,2.25)代入得,a(0﹣1)2+3=2.25,解得a=﹣,∴抛物线的解析式为:y=﹣(x﹣1)2+3.(2)令y=0,得,0=﹣(x﹣1)2+3,解得x=﹣1(舍)或x=3,∵2×3=6(米),∴水池的直径至少要6米才能使喷出的水流不落到池外.(3)将抛物线向下平移,使平移后的抛物线经过点(2.5,0),设平移后的抛物线的解析式为:y=﹣(x﹣1)2+h,将(2.5,0)代入得,﹣(2.5﹣1)2+h=0,解得h=,当x=0时,y=﹣(0﹣1)2+=.∴调整后水管的最大长度米.32.红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?【答案】见试题解答内容【解答】解:(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,由题意得:=,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对.(2)①y=(50+x﹣35)(98﹣2x)=﹣2x2+68x+1470,答:y与x之间的函数解析式为:y=﹣2x2+68x+1470.②∵a=﹣2<0,∴函数y有最大值,该二次函数的对称轴为:x=﹣=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x=15时,y最大=2040.15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.33.某公司分别在A、B两城生产一批同种产品,共100件,A城生产产品的成本y(万元)与产品数量x(件)之间的函数关系为y=ax2+bx,当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求A城生产产品的成本y(万元)与产品数量x(件)之间的函数关系式;(2)当A、B两城生产这批产品的总成本的和最少时,求A、B两城各生产多少件.【答案】(1)y=x2+30x;(2)A城生产20件,B城生产80件.【解答】解:(1)由题意得:,解得:.∴a=1,b=30;∴y=x2+30x;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件.34.某企业接到一批帽子生产任务,按要求在20天内完成,约定这批帽子的出厂价为每顶8元.为按时完成任务,该企业招收了新工人,设新工人小华第x天生产的帽子数量为y顶,y与x满足如下关系式:y=(1)小华第几天生产的帽子数量为220顶?(2)如图,设第x天每顶帽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若小华第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多49元,则第(m+1)天每顶帽子至少应提价几元?【答案】见试题解答内容【解答】解:(1)若20x=220,则x=11,与0≤x≤5不符,∴10x+100=220,解得,x=12,故第12天生产了220顶帽子;(2)由图象得,当0≤x≤10时,P=5.2;当10<x≤20时,设P=kx+b(k≠0),把(10,5.2),(20,6.2)代入上式,得,解得,,∴P=0.1x+4.2①0≤x≤5时,w=y(8﹣P)=20x(8﹣5.2)=56x当x=5时,w有最大值为w=280(元)②5<x≤10时,w=y(8﹣P)=(10x+100)(8﹣5.2)=28x+280,当x=10时,w有最大值,最大值为560(元);③10<x≤20时,w=y(8﹣P)=(10x+100)[8﹣(0.1x+4.2)]=﹣x2+28x+380当x=14时,w有最大值,最大值为576(元).综上,第14天时,利润最大,最大值为576元.(3)由(2)小题可知,m=14,m+1=15,设第15天提价a元,由题意得w=y(8+a﹣P)=(10x+100)[8+a﹣(0.1x+4.2)]=250(2.3+a)∴250(2.3+a)﹣576≥49∴a≥0.2答:第15天每顶帽子至少应提价0.2元.35.如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?【答案】见试题解答内容【解答】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,∵y=﹣0.2x2+3.5,而球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2.答:球出手时,他跳离地面的高度为0.2m.一十一.二次函数综合题(共5小题)36.如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A.ab=﹣2 B.ab=﹣3 C.ab=﹣4 D.ab=﹣5【答案】B【解答】解:令x=0,得:y=b.∴C(0,b).令y=0,得:ax2+b=0,∴x=±,∴A(﹣,0),B(,0),∴AB=2,BC==.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(﹣)=b2﹣,∴ab=﹣3.∴a,b应满足关系式ab=﹣3.故选:B.37.如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,﹣1≤x≤3.(1)求抛物线的表达式;(2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.①当点P的横坐标为2时,求四边形ACFD的面积;②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)①4;②是,定值为8,理由见解析.【解答】解:(1)∵当y≥0时,﹣1≤x≤3,∴x1=﹣1,x2=3是ax2+2x+c=0的两根,A(﹣1,0),B(3,0),∴,解得:,∴抛物线的表达式为:y=﹣x2+2x+3;(2)①把x=2代入y=﹣x2+2x+3得:y=3,∴D(2,3).又当x=0,y=3,∴C(0,3),∴线段CD∥x轴.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),;②设D(m,﹣m2+2m+3)(1<m<3),直线AD:y=k1x+b1,BD:y=k2x+b2,因此可得:或,解得:或,∴直线AD:y=(3﹣m)x+(3﹣m),BD:y=﹣(m+1)x+3(m+1).令x=1得yM=6﹣2m,yN=2m+2,∴ME=6﹣2m,NE=2m+2,∴NE+ME=8.38.如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2+k(a≠0)图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,其中点B的坐标为(2,0),点C的坐标为(0,4).(1)求该抛物线的解析式;(2)如图1,若点P为抛物线上第二象限内的一个动点,点M为线段CO上一动点,当△APC的面积最大时,求△APM周长的最小值;(3)如图2,将原抛物线绕点A旋转180°,得新抛物线y',在新抛物线y'的对称轴上是否存在点Q使得△ACQ为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.【答案】(1)y=﹣(x+1)2+.(2)△APM周长的最小值为:2+2.(3)存在,点Q的坐标为(﹣7,)或(﹣7,﹣)或(﹣7,7).【解答】解:(1)∵抛物线y=a(x﹣h)2+k(a≠0)的对称轴为直线x=﹣1,∴x=h=﹣1,∵抛物线过点B(2,0),点C(0,4),∴,解得,∴抛物线的解析式为:y=﹣(x+1)2+.(2)由(1)知函数解析式为:y=﹣(x+1)2+.∴A(﹣4,0),∴直线AC:y=x+4,过点P作PN∥AC,设直线PN的解析式为:y=x+m,当△APC的面积最大时,直线PN与抛物线有且仅有一个交点,令x+m=﹣(x+1)2+,整理得x2+4x+2m﹣8=0,∴Δ=42﹣4(2m﹣8)=0,解得m=6,∴x2+4x+4=0,∴x=﹣2,即P(﹣2,4);作点A关于y轴的对称点A′,连接A′P交y轴于点M,如图1,此时△APM的周长最小,∵A(﹣4,0),∴A′(4,0),∴A′P==2,AP==2,∴△APM周长的最小值为:2+2.(3)由(1)知原抛物线的顶点坐标D(﹣1,),绕点A旋转后的顶点D′(﹣7,﹣),∴y′的对称轴为直线x=﹣7;设点Q的坐标为(﹣7,t),若△ACQ是等腰三角形,则需要分类讨论:①当AC=AQ时,如图2;∴(﹣4﹣0)2+(0﹣4)2=(﹣4+7)2+(0﹣t)2,解得t=±;∴Q(﹣7,)或(﹣7,﹣);②当CA=CQ时;∴(﹣4﹣0)2+(0﹣4)2=(0+7)2+(4﹣t)2,无解;③当QA=QC时,如图3,∴(﹣4+7)2+(0﹣t)2=(0+7)2+(4﹣t)2,解得t=7,∴Q(﹣7,7).综上可知,存在,点Q的坐标为(﹣7,)或(﹣7,﹣)或(﹣7,7).39.已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚氨酯保温施工方案
- 二零二五年度创新项目增资计划书模板3篇
- 通讯线杆迁移施工方案
- 2025年度标准化钢管脚手架内外工程项目承包合同
- 2025版私车公用租车协议规范企业用车行为3篇
- 防尘专项施工方案
- 二零二五年度金融机构协议存款质押合同3篇
- 二零二五版地质勘查项目管理法规与资源开发3篇
- 二零二五版团购房购房权转让与绿色建筑技术研发协议3篇
- 山西矿用焊接网片施工方案
- 音乐教学集训课程设计
- 2025内墙乳胶漆合同范文
- 肺切除手术的术前评估课件
- 护士的护理职业生涯规划
- 2024电子商务平台用户隐私保护协议3篇
- 电力工程施工安全风险评估与防控
- 内分泌系统异常与虚劳病关系
- 义务教育数学课程标准(2022年版)重点
- 2021上海春考作文题解析及范文(怎样做与成为什么样人)
- DB3418T 008-2019 宣纸润墨性感官评判方法
- 137案例黑色三分钟生死一瞬间事故案例文字版
评论
0/150
提交评论