2025届四川省眉山市彭山一中数学高二上期末检测试题含解析_第1页
2025届四川省眉山市彭山一中数学高二上期末检测试题含解析_第2页
2025届四川省眉山市彭山一中数学高二上期末检测试题含解析_第3页
2025届四川省眉山市彭山一中数学高二上期末检测试题含解析_第4页
2025届四川省眉山市彭山一中数学高二上期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省眉山市彭山一中数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点到准线的距离()A.4 B.C.2 D.2.已知、、、是直线,、是平面,、、是点(、不重合),下列叙述错误的是()A.若,,,,则B.若,,,则C.若,,则D.若,,则3.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的类似问题:把150个完全相同的面包分给5个人,使每个人所得面包数成等差数列,且使较大的三份面包数之和的是较小的两份之和,则最大的那份面包数为()A.30 B.40C.50 D.604.若点是函数图象上的动点(其中的自然对数的底数),则到直线的距离最小值为()A. B.C. D.5.()A.-2 B.-1C.1 D.26.中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见首日行里数,请公仔细算相还.”其大意为:有一个人走里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,恰好走了天到达目的地,则该人第一天走的路程为()A.里 B.里C.里 D.里7.若,则下列不等式不能成立是()A. B.C. D.8.经过两点直线的倾斜角是()A. B.C. D.9.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰好有一个黑球与恰好有两个黑球D.至少有一个黑球与都是红球10.中,三边长之比为,则为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不存在这样的三角形11.若且,则下列不等式中一定成立的是()A. B.C. D.12.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.0二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_____________________.14.已知曲线表示焦点在轴上的双曲线,则符合条件的的一个整数值为______.15.设,为实数,已知经过点的椭圆与双曲线有相同的焦点,则___________.16.经过两点的直线的倾斜角为,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某班主任对全班名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游不喜欢手机网游总数(1)若随机地抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(2)若在“认为作业多”的学生中已经用分层抽样的方法选取了名学生.现要从这名学生中任取名学生了解情况,求其中恰有名“不喜欢手机网游”的学生的概率18.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角余弦值.19.(12分)在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0(1)求角C的大小(2)若c=2,a+b=ab,求△ABC的面积20.(12分)已知抛物线:的焦点到顶点的距离为.(1)求抛物线的方程;(2)已知过点的直线交抛物线于不同的两点,,为坐标原点,设直线,的斜率分别为,,求的值.21.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.22.(10分)如图,在直三棱柱中,,E、F分别是、的中点(1)求证:平面;(2)求证:平面

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】写出抛物线的标准方程,即可确定焦点到准线的距离.【详解】由题设,抛物线的标准方程为,则,∴焦点到准线的距离为4.故选:A.2、D【解析】由公理2可判断A选项;由公理3可判断B选项;利用平行线的传递性可判断C选项;直接判断线线位置关系,可判断D选项.【详解】对于A选项,由公理2可知,若,,,,则,A对;对于B选项,由公理3可知,若,,,则,B对;对于C选项,由空间中平行线的传递性可知,若,,则,C对;对于D选项,若,,则与平行、相交或异面,D错.故选:D.3、C【解析】根据题意得到递增等差数列中,,,从而化成基本量,进行计算,再计算出,得到答案.【详解】根据题意,设递增等差数列,首项为,公差,则所以解得所以最大项.故选:C4、A【解析】设,,设与平行且与相切的直线与切于,由导数的几何意义可求出点的坐标,则到直线的距离最小值为点到直线的距离,再求解即可.【详解】解:设,,设与平行且与相切的直线与切于所以所以则到直线的距离为,即到直线的距离最小值为,故选:A5、A【解析】利用微积分基本定理计算得到答案.【详解】.故选:.【点睛】本题考查了定积分的计算,意在考查学生的计算能力.6、C【解析】建立等比数列的模型,由等比数列的前项和公式求解【详解】记第天走的路程为里,则是等比数列,,,故选:C7、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.8、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B9、C【解析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,逐项判断.【详解】A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,这两个事件不是互斥事件,故错误;B:事件:“至少有一个黑球”与事件:“至少有一个红球”可以同时发生,如:一个红球一个黑球,故错误;C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,两个事件是互斥事件但不是对立事件,故正确D:事件:“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,这两个事件是对立事件,故错误;故选:C10、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角为钝角.【详解】设三边分别为,,,中的最大角为,,为钝角,为钝角三角形.故选:C.11、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.12、A【解析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先判定点在曲线上,然后利用导数的几何意义求得答案.【详解】由题意可知点在曲线上,而,故曲线在点处的切线斜率为,所以切线方程:,即,故答案为:14、.(答案不唯一)【解析】给出一个符合条件的值即可.【详解】当时,曲线表示焦点在轴上的双曲线,故答案为:.(答案不唯一)15、1【解析】由点P在椭圆上,可得的值,再根据椭圆与双曲线有相同的焦点即可求解.【详解】解:因为点在椭圆上,所以,解得,所以椭圆方程为,又椭圆与双曲线有相同的焦点,所以,解得,故答案为:1.16、2【解析】由两点间的斜率公式及直线斜率的定义即可求解.【详解】解:因为过两点的直线的倾斜角为,所以,解得,故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率分别为、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)确定所选的名学生中,“不喜欢手机网游”和“喜欢手机网游”的学生人数,加以标记,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由题意可知,全班名学生中,“认为作业不多”的学生人数为人,“喜欢手机网游且认为作业多”的学生人数为人,因此,随机地抽问这个班的一名学生,事件“认为作业不多”的概率为,事件“喜欢手机网游且认为作业多”的概率为.【小问2详解】解:在“认为作业多”的学生中已经用分层抽样的方法选取了名学生,这名学生中“不喜欢手机网游”的学生人数为,记为,名学生中“喜欢手机网游”的学生人数为,分别记为、、、,从这名学生中任取名学生,所有的基本事件有:、、、、、、、、、,共种,其中,事件“恰有名“不喜欢手机网游”的学生”包含的基本事件有:、、、,共种,故所求概率为.18、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;【小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面,所以DC,DB,DE两两垂直以D为原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系设.则,,.从而,设平面BCE的法向量为,则令,得平面ABC的一个法向量为设二面角为,由图可知为锐角,则19、(1);(2).【解析】(1)由题意首先利用正弦定理边化角,据此求得,则角C的大小是;(2)由题意结合余弦定理可得,然后利用面积公式可求得△ABC的面积为.试题解析:(1)∵c•cosB+(b-2a)cosC=0,由正弦定理化简可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,∵0<A<π,∴sinA≠0.∴cosC=.∵0<C<π,∴C=.(2)由(1)可知:C=.∵c=2,a+b=ab,即a2b2=a2+b2+2ab.由余弦定理cosC==,∴ab=(ab)2-2ab-c2.可得:ab=4.那么:△ABC的面积S=absinC=.20、(1)(2)【解析】(1)由抛物线的几何性质有焦点到顶点的距离为,从而即可求解;(2)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设的方程为,,,联立抛物线的方程,由韦达定理及两点间的斜率公式即可求解.【小问1详解】解:依题意,,解得,∴抛物线的方程为;【小问2详解】解:当直线的斜率不存在时,直线与抛物线仅有一个交点,不符合题意;当直线的斜率存在时,设的方程为,,,由消去可得,∵直线交抛物线于不同的两点,∴,由韦达定理得,∴.21、(1)(2)=2【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论