版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省辽阳市2025届高二上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一部影片在4个单位轮流放映,每个单位放映一场,不同的放映次序有()A.种 B.4种C.种 D.种2.已知椭圆上一点到椭圆一个焦点的距离是,则点到另一个焦点的距离为()A.2 B.3C.4 D.53.点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A. B.C. D.4.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件5.已知实数a,b,c满足,,则a,b,c的大小关系为()A. B.C. D.6.命题:“∃x<1,x2<1”的否定是()A.∀x≥1,x2<1 B.∃x≥1,x2≥1C.∀x<1,x2≥1 D.∃x<1,x2≥17.已知直线过抛物线C的焦点,且与C的对称轴垂直,与C交于A,B两点,P为C的准线上一点,若的面积为36,则等于()A.36 B.24C.12 D.68.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.59.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.10.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆11.双曲线:的一条渐近线与直线垂直,则它的离心率为()A. B.C. D.12.已知空间向量,,,若,,共面,则m+2t=()A.-1 B.0C.1 D.-6二、填空题:本题共4小题,每小题5分,共20分。13.已知长轴长为,短轴长为的椭圆的面积为.现用随机模拟的方法来估计的近似值,先用计算机产生个数对,,其中,均为内的随机数,再由计算机统计发现其中满足条件的数对有个,由此可估计的近似值为______________14.已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______15.已知随机变量,且,则______.16.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,是椭圆:的左、右焦点,离心率为,点A在椭圆C上,且的周长为.(1)求椭圆C的方程;(2)若B为椭圆C上顶点,过的直线与椭圆C交于两个不同点P、Q,直线BP与x轴交于点M,直线BQ与x轴交于点N,判断是否为定值.若是,求出定值,若不是,请说明理由.18.(12分)芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x(亿元)与收益y(亿元)的数据统计如下:(1)根据折线图数据,求y关于x的线性回归方程(系数精确到整数部分);(2)为鼓励科技创新,当研发技术投入不少于16亿元时,国家给予公司补贴5亿元,预测当芯片的研发投入为17亿元时公司的实际收益附:其回归方程的斜率和截距的最小二乘法估计分别为,.参考数据,19.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积20.(12分)已知两条直线,.设为实数,分别根据下列条件求的值.(1);(2)直线在轴、轴上截距之和等于.21.(12分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值22.(10分)有时候一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同品牌的一些食品所含热量的百分比记为和一些美食家以百分制给出的对此种食品口味的评价分数记为:食品品牌12345678910所含热量的百分比25342019262019241914百分制口味评价分数88898078757165626052参考数据:,,,参考公式:,(1)已知这些品牌食品的所含热量的百分比与美食家以百分制给出的对此种食品口味的评价分数具有相关关系.试求出回归方程(最后结果精确到);(2)某人只能接受食品所含热量百分比为及以下的食品.现在他想从这些食品中随机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食品口味的评价分数为分以上的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意得到一部影片在4个单位轮流放映,相当于四个单位进行全排列,即可得到答案.【详解】一部影片在4个单位轮流放映,相当于四个单位进行全排列,所以不同的放映次序有种,故选:C2、C【解析】根据椭圆的定义,结合题意,即可求得结果.【详解】设椭圆的两个焦点分别为,故可得,又到椭圆一个焦点的距离是,故点到另一个焦点的距离为.故选:.3、C【解析】对于①,根据线线平行的性质可知点即为点,因此可判断①正确;对于②,根据线面垂直的判定可知平面,,由此可判定的位置,进而判定②的正误;对于③,根据面面平行可判定平面平面,因此可判断此时一定落在上,由此可判断③的正误.【详解】如图:对于①,在正方体中,,若异于,则过点至少有两条直线和平行,这是不可能的,因此底面内(包括边界)满足的点有且只有个,即为点,故①正确;对于②,正方体中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直线一定落在平面内,由是平面上的动点可知,一定落在上,这样的点有无数多个,故②错误;对于③,,平面,则平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的动点可知,此时一定落在上,即点的轨迹是线段,故③正确,故选:C.4、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.5、A【解析】利用对数的性质可得,,再构造函数,利用导数判断,再构造,利用导数判断出函数的单调性,再由单调性即可求解.【详解】由题意可得均大于,因为,所以,所以,且,令,,当时,,所以在单调递增,所以,所以,即,令,,当时,,所以在上单调递减,由,,所以,所以,综上所述,.故选:A6、C【解析】将特称命题否定为全称命题即可【详解】根据含有量词的命题的否定,则“∃x<1,x2<1”的否定是“∀x<1,x2≥1”.故选:C.7、C【解析】设抛物线方程为,根据题意由求解.【详解】设抛物线方程为:,因为直线过抛物线C的焦点,且与C的对称轴垂直,所以,又P为C的准线上一点,所以点P到直线AB的距离为p,所以,解得,所以,故选:C8、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.9、C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.10、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A11、A【解析】先利用直线的斜率判定一条渐近线与直线垂直,求出,再利用双曲线的离心率公式和进行求解.【详解】因为直线的斜率为,所以双曲线的一条渐近线与直线垂直,所以,即,则双曲线的离心率.故选:A.卷II(非选择题12、D【解析】根据向量共面列方程,化简求得.【详解】,所以不共线,由于,,共面,所以存在,使,即,,,,,即.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,,根据表示的数对对应的点在椭圆的内部,且在第一象限,求出满足条件的点的概率,再转化为几何概型的面积类型求解【详解】,,表示的数对对应的点在椭圆的内部,且在第一象限,其面积为,故,得故答案为:.【点睛】本题主要考查了几何型概率应用,解题关键是掌握几何型概率求法,考查了分析能力和计算能力,属于基础题.14、##【解析】根据题设及双曲线离心率公式可得,结合双曲线离心率的性质即可求离心率.【详解】由题设,,整理得:,所以,而,故.故答案为:.15、【解析】根据二项分布的均值与方差的关系求得,再根据方差的性质求解即可.【详解】,所以,又因为,所以故答案为:12【点睛】本题主要考查了二项分布的均值与方差的计算,同时也考查了方差的性质,属于基础题.16、【解析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为,由于侧面展开图是一个半圆,又圆锥的母线长为cm,所以该半圆的半径为cm,所以,所以(cm).故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用椭圆的定义可得,而离心率,解方程组,即可得解;(2)设直线的方程为,将其与椭圆的方程联立,由,,三点的坐标写出直线,的方程,进而知点,的坐标,再结合韦达定理,进行化简,即可得解【小问1详解】解:因为的周长为,所以,即,又离心率,所以,,所以,故椭圆的方程为【小问2详解】解:由题意知,直线的斜率一定不可能为0,设其方程为,,,,,联立,得,所以,,因为点为,所以直线的方程为,所以点,,直线的方程为,所以点,,所以,即为定值18、(1)(2)85亿元【解析】(1)利用公式和数据计算即可(2)代入回归直线计算即可小问1详解】由折线图中数据知,,,因为,所以所以y关于x的线性回归方程为【小问2详解】当时,亿元,此时公司的实际收益的预测值为亿元19、(1)证明见解析(2)【解析】(1)将问题转化为证明AB⊥平面PAC,然后结合已知可证;(2)建立空间直角坐标系,用向量法结合已知先确定点M位置,然后转化法求体积可得.【小问1详解】由题意得四边形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小问2详解】过点A作AE⊥BC于E,易知E为BC中点,以A为原点,AE,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,则,,,.则设,.显然,是平面ACD的一个法向量,设平面MAC的一个法向量为.则有,取,解得由二面角M﹣AC﹣D的余弦值为,有,解得,所以M为PD中点.所以20、(1);(2).【解析】(1)由两直线平行可得出关于的等式,求出的值,再代入两直线方程,验证两直线是否平行,由此可得出结果;(2)分析可知,求出直线在轴、轴上的截距,结合已知条件可得出关于的等式,即可解得的值.【小问1详解】解:由,则,即,解得或.当时,,,此时;当时,,,此时重合,不合乎题意.综上所述,;【小问2详解】解:对于直线,由已知可得,则,令,得;令,得.因为直线在轴、轴上截距之和等于,即,解得.21、(1)服务通道的长为千米(2)时,折线赛道的长度最大,最大值为千米【解析】(1)先在中利用正弦定理得到长度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根据基本等式求解最值即可.【小问1详解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(负值舍去)所以服务通道的长为千米【小问2详解】在中,由余弦定理得:,即,所以因为,所以,所以,即(当且仅当时取等号)即当时,折线赛道的长度最大,最大值为千米22、(1)(2)【解析】(1)首先求出、、,即可求出,从而求出回归直线方程;(2)由表可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国富硒精米数据监测研究报告
- 2024至2030年中国二人餐台数据监测研究报告
- 2024年中国焊丝涡流探伤仪市场调查研究报告
- 2024年中国吸塑笔盒市场调查研究报告
- 2024至2030年中国特清高固透明底漆数据监测研究报告
- 【课件】法检系统公务员面试
- 2024年国家网络安全宣传周心得体会范文(32篇)
- 坚定目标青春勇往直前
- 健身俱乐部会员训练意外风险免责协议书
- 优化心肌能量代谢治疗缺血性心脏病-高润霖
- IT企业安全生产管理制度范本
- 工业传感器行业市场调研分析报告
- 2024电影数字节目管理中心招聘历年高频难、易错点练习500题附带答案详解
- 小学生心理健康讲座5
- 上海市市辖区(2024年-2025年小学五年级语文)部编版期末考试((上下)学期)试卷及答案
- 国家职业技术技能标准 X2-10-07-18 陶瓷工艺师(试行)劳社厅发200633号
- 人教版八年级上册生物全册教案(完整版)教学设计含教学反思
- 棋牌室消防应急预案
- 2024年银行考试-银行间本币市场交易员资格考试近5年真题附答案
- 人教版小学四年级数学上册期末复习解答题应用题大全50题及答案
- 冀教版五年级上册脱式计算题100道及答案
评论
0/150
提交评论