2025届宁夏银川二中高一数学第一学期期末质量检测试题含解析_第1页
2025届宁夏银川二中高一数学第一学期期末质量检测试题含解析_第2页
2025届宁夏银川二中高一数学第一学期期末质量检测试题含解析_第3页
2025届宁夏银川二中高一数学第一学期期末质量检测试题含解析_第4页
2025届宁夏银川二中高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届宁夏银川二中高一数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.2.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.3.已知,,则()A. B.C. D.4.函数的大致图像如图所示,则它的解析式是A. B.C. D.5.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.6.已知,,且,,则的值是A. B.C. D.7.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则8.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.9.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.10.若“”是“”的充分不必要条件,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则__________.12.某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________13.已知函数的图象与函数及函数的图象分别交于两点,则的值为__________14.命题“,”的否定是___________.15.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-116.已知函数的图上存在一点,函数的图象上存在一点,恰好使两点关于直线对称,则满足上述要求的实数的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.18.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.19.如图,直三棱柱中,分别为的中点.(1)求证:平面;(2)已知,,,求三棱锥的体积.20.已知函数f(x)=(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)的单调性;(3)解不等式:f(x2-2x)+f(3x-2)<0;21.如图,在直三棱柱中,底面为等边三角形,.(Ⅰ)求三棱锥的体积;(Ⅱ)在线段上寻找一点,使得,请说明作法和理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.2、C【解析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.3、D【解析】由同角三角函数的平方关系计算即可得出结果.【详解】因为,,,,所以.故选:D4、D【解析】由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B;的图象为开口向上的抛物线,显然不适合,故选D点睛:识图常用方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题5、A【解析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.6、B【解析】由,得,所以,,得,,所以,从而有,.故选:B7、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.8、C【解析】利用对数的运算性质求出,由此可得答案.【详解】,所以.故选:C9、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象10、B【解析】转化“”是“”的充分不必要条件为,分析即得解【详解】由题意,“”是“”的充分不必要条件故故故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知先求得,再求得,代入可得所需求的函数值.【详解】由已知得,即,所以,而,故答案为.【点睛】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.12、4050【解析】设每辆车的月租金定为元,则租赁公司的月收益:当时,最大,最大值为,即当每车辆的月租金定为元时,租赁公司的月收益最大,最大月收益是,故答案为.【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及几何概型概率公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.解答本题的关键是:将租赁公司的月收益表示为关于每辆车的月租金的函数,然后利用二次函数的性质解答.13、【解析】利用函数及函数的图象关于直线对称可得点在函数的图象上,进而可得的值【详解】由题意得函数及函数的图象关于直线对称,又函数的图象与函数及函数的图象分别交于两点,所以,从而点的坐标为由题意得点在函数的图象上,所以,所以故答案为4【点睛】解答本题的关键有两个:一是弄清函数及函数的图象关于直线对称,从而得到点也关于直线对称,进而得到,故得到点的坐标为;二是根据点在函数的图象上得到所求值.考查理解和运用能力,具有灵活性和综合性14、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”15、D【解析】设平均增长率为x,由题得故填.16、【解析】函数g(x)=lnx的反函数为,若函数f(x)的图象上存在一点P,函数g(x)=lnx的图象上存在一点Q,恰好使P、Q两点关于直线y=x对称,则函数g(x)=lnx的反函数图象与f(x)图象有交点,即在x∈R上有解,,∵x∈R,∴∴即.三、三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上单调递增∴,∴,故m的最大值为3.18、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.19、(1)详见解析(2)2【解析】(1)证线面平行则需在面中找一线与已知线平行即可,也可通过证明面面平行得到线面平行(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高为,∴棱柱的体积为.由体积关系可得试题解析:(1)设是的中点,分别在中使用三角形的中位线定理得.又是平面内的相交直线,∴平面平面.又平面,∴平面.(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高为,∴棱柱的体积为.∴.20、(1)奇函数(2)单调增函数,证明见解析(3)【解析】(1)按照奇函数的定义判断即可;(2)按照单调性的定义判断证明即可;(3)由单调递增解不等式即可.【小问1详解】易知函数定义域R,所以函数为奇函数.【小问2详解】设任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是单调增函数【小问3详解】∵f(x2-2x)+f(3x-2)<0,又∵f(x)是定义在R上的奇函数且在(-∞,+∞)上单调递增,∴f(x2-2x)<f(2-3x),∴x2-2x<2-3x,∴-2<x<1.不等式的解集是21、(1)(2)见解析【解析】(1)取BC中点E连结AE,三棱锥C1﹣CB1A的体积,由此能求出结果.(2)在矩形BB1C1C中,连结EC1,推导出Rt△C1CE∽Rt△CBF,从而CF⊥EC1,再求出AE⊥CF,由此得到在BB1上取F,使得,连结CF,CF即为所求直线解析:(1)取中点连结.在等边三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论