上海培佳双语学校2025届高一上数学期末联考模拟试题含解析_第1页
上海培佳双语学校2025届高一上数学期末联考模拟试题含解析_第2页
上海培佳双语学校2025届高一上数学期末联考模拟试题含解析_第3页
上海培佳双语学校2025届高一上数学期末联考模拟试题含解析_第4页
上海培佳双语学校2025届高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海培佳双语学校2025届高一上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,以为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,则的最小值为A. B.C. D.2.已知,则=A.2 B.C. D.13.下列关于函数的图象中,可以直观判断方程在上有解的是A. B.C. D.4.使幂函数为偶函数,且在上是减函数的值为()A. B.C. D.25.已知函数,则的值是A.-24 B.-15C.-6 D.126.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%7.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④8.已知函数的定义域是且满足如果对于,都有不等式的解集为A. B.C. D.9.已知全集,集合,图中阴影部分所表示的集合为A. B.C. D.10.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个同时满足以下条件的函数___________;①是周期函数;②最大值为3,最小值为;③在上单调12.如图,扇形的面积是1,它的弧长是2,则扇形的圆心角的弧度数为______13.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________14.函数的部分图象如图所示.则函数的解析式为______15.若、是关于x的方程的两个根,则__________.16.命题“”的否定是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积18.已知M(1,﹣1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.19.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率20.已知(1)化简;(2)若是第三象限角,且,求的值21.已知向量,,(1)若,求向量与的夹角;(2)若函数.求当时函数的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】因为为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,设切点为,所以,设,则,,故选D.考点:1、圆的几何性质;2、数形结合思想及三角函数求最值【方法点睛】本题主要考查圆的几何性质、数形结合思想及三角函数求最值,属于难题.求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②三角函数法:将问题转化为三角函数,利用三角函数的有界性求最值;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图像法:画出函数图像,根据图像的最高和最低点求最值,本题主要应用方法②求的最小值的2、D【解析】.故选.3、D【解析】方程f(x)-2=0在(-∞,0)上有解,∴函数y=f(x)与y=2在(-∞,0)上有交点,分别观察直线y=2与函数f(x)的图象在(-∞,0)上交点的情况,选项A,B,C无交点,D有交点,故选D点睛:这个题目考查了方程有解的问题,把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,要求图像的画法要准确4、B【解析】根据幂函数的性质确定正确选项.【详解】A选项,是奇函数,不符合题意.B选项,为偶函数,且在上是减函数,符合题意.C选项,是非奇非偶函数,不符合题意.D选项,,在上递增,不符合题意.故选:B5、C【解析】∵函数,∴,故选C6、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B7、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D8、D【解析】令x=,y=1,则有f()=f()+f(1),故f(1)=0;令x=,y=2,则有f(1)=f()+f(2),解得,f(2)=﹣1,令x=y=2,则有f(4)=f(2)+f(2)=﹣2;∵对于0<x<y,都有f(x)>f(y),∴函数f(x)是定义在(0,+∞)上的减函数,故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),故,解得,﹣1≤x<0.∴不等式的解集为故选D点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.9、A【解析】由题意可知,阴影部分所表示的元素属于,不属于,结合所给的集合求解即可确定阴影部分所表示的集合.【详解】由已知中阴影部分在集合中,而不在集合中,故阴影部分所表示的元素属于,不属于(属于的补集),即.【点睛】本题主要考查集合表示方法,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.10、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】根据余弦函数的性质,构造满足题意的函数,由此即可得到结果.详解】由题意可知,,因为的周期为,满足条件①;又,所以,满足条件②;由于函数在区间上单调递减,所以区间上单调递减,故满足条件③.故答案为:.12、【解析】根据扇形的弧长公式和面积公式,列出方程组,即可求解.【详解】由题意,设扇形所在圆的半径为,扇形的弧长为,因为扇形的面积是1,它的弧长是2,由扇形的面积公式和弧长公式,可得,解得,.故答案为2.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和扇形的面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时14、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.15、【解析】先通过根与系数的关系得到的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:,所以或,且,所以,即,因为或,所以.故答案为:.16、【解析】根据全称命题的否定是特称命题,写出结论.【详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”.【点睛】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为18、(1)(2)【解析】(1)设Q(x,y),根据PQ⊥MN得出,然后由PN∥MQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由∠NQP=∠NPQ得出kNQ=﹣kNP,解方程求出Q的坐标,然后即可得出结果.【小问1详解】设Q(x,y),由已知得kMN=3,又PQ⊥MN,可得kMN×kPQ=﹣1即(x≠3)①由已知得kPN=﹣2,又PN∥MQ,可得kPN=kMQ,即(x≠1)②联立①②求解得x=0,y=1,∴Q(0,1);【小问2详解】设Q(x,0),∵∠NQP=∠NPQ,∴kNQ=﹣kNP,又∵kNQ,kNP=﹣2,∴2解得x=1,∴Q(1,0),又∵M(1,﹣1),∴MQ⊥x轴,故直线MQ的倾斜角为90°.19、(1);20;(2)分,76.67分(3)【解析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;这100人中测试成绩在[80,85)的人数为(人);【小问2详解】平均数为:(分),设中位数为m,且,则,解得,故第50%分数位76.67分;【小问3详解】第三组频率为,第四组频率为,第五组频率为,故从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,三组人数为3人,2人和1人,记第三组抽取人为,第四组抽取的人为,第五组抽取的人为,则抽取2人的所有情况如下:共15种,其中第四组至少有1名老师被抽到的抽法有共9种,故第四组至少有1名老师被抽到的概率为.20、(1);(2).【解析】(1)利用诱导公式化简==;(2)由诱导公式可得,再利用同角三角函数关系求出即可试题解析:(1)(2)∵,∴,又第三象限角,∴,∴点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论