版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西壮族自治区百色市高二数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率2.已知,则下列不等式一定成立的是()A. B.C. D.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件4.若点是函数图象上的动点(其中的自然对数的底数),则到直线的距离最小值为()A. B.C. D.5.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率的取值范围是()A. B.C. D.6.已知p:,q:,那么p是q的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件7.从0,1,2,3,4,5这六个数字中,任取两个不同数字构成平面直角坐标系内点的横、纵坐标,其中不在轴上的点有()A.36个 B.30个C.25个 D.20个8.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.5129.()A. B.C. D.10.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.11.若一个正方体的全面积是72,则它的对角线长为()A. B.12C. D.612.有甲、乙两个抽奖箱,甲箱中有3张无奖票3张有奖票,乙箱中有4张无奖票2张有奖票,某人先从甲箱中抽出一张放进乙箱,再从乙箱中任意抽出一张,则最后抽到有奖票的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆柱轴截面是边长为4的正方形,则圆柱的侧面积为______________
.14.双曲线的离心率为,则它的一个焦点到一条渐近线的距离为______15.在平面上给定相异两点A,B,点P满足,则当且时,P点的轨迹是一个圆,我们称这个圆为阿波罗尼斯圆.已知椭圆的离心率,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,若的面积的最大值为3,则面积的最小值为___________.16.不等式的解集是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点(1)求证:平面ABCD;(2)求直线AB与平面PBC所成角的正弦值18.(12分)已知圆心为的圆,满足下列条件:圆心在轴上,与直线相切,且被轴截得的弦长为,圆的面积小于(1)求圆的标准方程;(2)设过点的直线与圆交于不同的两点、,以、为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程,如果不存在,请说明理由19.(12分)已知等差数列的前n项和为,且.(1)求数列的通项公式及;(2)设,求数列的前n项和.20.(12分)已知椭圆上的点到焦点的最大距离为3,离心率为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,与轴交于点,且满足,若,求实数的取值范围.21.(12分)已知圆(1)若直线与圆C相交于A、B两点,当弦长最短时,求直线l的方程;(2)若与圆C相外切且与y轴相切的圆的圆心记为D,求D点的轨迹方程22.(10分)已知数列满足,记数列的前项和为,且,(1)求数列的通项公式;(2)若,求数列的前100项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断2、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B3、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.4、A【解析】设,,设与平行且与相切的直线与切于,由导数的几何意义可求出点的坐标,则到直线的距离最小值为点到直线的距离,再求解即可.【详解】解:设,,设与平行且与相切的直线与切于所以所以则到直线的距离为,即到直线的距离最小值为,故选:A5、B【解析】根据题意得到,根据,化简得到,进而得到离心率的不等式,即可求解.【详解】由题意,椭圆的左顶点为,上顶点为,所以,,因为,可得,即,又由,可得,可得,解得,又因为椭圆的离心率,所以,即椭圆的离心率为.故选:B.【点睛】求解椭圆或双曲线离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.6、C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.7、C【解析】根据点不在y轴上,分2类根据分类加法计数原理求解.【详解】因为点不在轴上,所以点的横坐标不能为0,分两类考虑,第一类含0且为点的纵坐标,共有个点,第二类坐标不含0的点,共有个点,根据分类加法计数原理可得共有个点.故选:C8、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.9、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.10、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题11、D【解析】根据全面积得到正方体的棱长,再由勾股定理计算对角线.【详解】设正方体的棱长为,对角线长为,则有,解得,从而,解得.故选:D12、B【解析】先分为在甲箱中抽出一张有奖票放入乙箱和在甲箱中抽出一张无奖票放入乙箱,进而结合条件概率求概率的方法求得答案.【详解】记表示在甲箱中抽出一张有奖票放进乙箱,表示在甲箱中抽出一张无奖票放进乙箱,A表示最后抽到有奖票.所以,,于是.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由圆柱轴截面的性质知:圆柱体的高为,底面半径为,根据圆柱体的侧面积公式,即可求其侧面积.【详解】由圆柱的轴截面是边长为4的正方形,∴圆柱体的高为,底面半径为,∴圆柱的侧面积为.故答案为:.14、【解析】根据双曲线离心率为,可得的值,进而可得双曲线焦点到一条渐近线的距离.【详解】由双曲线离心率为,得,即,故双曲线方程为,焦点坐标为,渐近线方程为:,故焦点到渐近线的距离为,故答案为:.15、【解析】先根据求出圆的方程,再由的面积的最大值结合离心率求出和的值,进而求出面积的最小值.【详解】解:由题意,设,,因为即两边平方整理得:所以圆心为,半径因为的面积的最大值为3所以,解得:因为椭圆离心率即,所以由得:所以面积的最小值为:故答案为:.【点睛】思路点睛:本题先根据已知的比例关系求出阿波罗尼斯圆的方程,再利用已知面积和离心率求出椭圆的方程,进而求得面积的最值.16、【解析】把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集【详解】不等式得,故,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)题中易得,,利用勾股定理可得,从而可证得线面垂直;(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,用空间向量法求线面角的正弦值【详解】(1)证明:在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点,,,,,,,平面ABCD(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,0,,,0,,,,,,设平面PBC的法向量y,,则,取,得1,,设直线AB与平面PBC所成角,直线AB与平面PBC所成角的正弦值为:【点睛】本题考查线面垂直的证明,考查空间向量法求线面角.空间角的求法一般都是建立空间直角坐标系,用空间向量法求得空间角18、(1);(2)不存在,理由见解析.【解析】(1)设圆心,设圆的半径为,可得出,根据已知条件可得出关于实数的方程,求出的值,可得出的值,进而可得出圆的标准方程;(2)分析可知直线的斜率存在,可设直线的方程为,设点、,将直线的方程与圆的方程联立,由可求得的取值范围,列出韦达定理,分析可得,可求得点的坐标,由已知可得出,求出的值,检验即可得出结论.【小问1详解】解:设圆心,设圆的半径为,则,由题意可得,由勾股定理可得,则,由题意可得,解得,则,因此,圆的标准方程为.【小问2详解】解:若直线的斜率不存在,此时直线与轴重合,则、、三点共线,不合乎题意.所以,直线的斜率存在,可设直线的方程为,设点、,联立,可得,,解得或,由韦达定理可得,,则,因为四边形为平行四边形,则,因为,则,则,解得,因为或,因此,不存直线,使得直线与恰好平行.19、(1)(2)【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,利用等差数列的通项公式可求得数列的通项公式,利用等差数列前n项和公式求出;(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式,;【小问2详解】由(1)可得,所以,所以.20、(1)(2),或【解析】(1)由椭圆的性质可知:,解得a和c的值,即可求得椭圆C的标准方程;(2)将直线方程代入椭圆方程,由韦达定理求得:,,λ,根据向量的坐标坐标,(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得实数m的取值范围【详解】(1)由已知,解得,所以,所以椭圆的标准方程为.(2)由已知,设,联立方程组,消得,由韦达定理得①②因为,所以,所以③,将③代入①②,,消去得,所以.因为,所以,即,解得,所以,或.【点睛】本题考查椭圆的标准方程及简单性质,直线与椭圆的位置关系,韦达定理,向量的坐标表示,不等式的解法,考查计算能力,属于中档题21、(1)(2)【解析】(1)先求出直线过的定点,再根据弦长|AB|最短时,求解.(2)用直译法求解【小问1详解】直线即,所以直线过定点.当弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 面向steam教育的2024《荷塘月色》教学课件开发
- 2024关于保护环境的演讲(35篇)
- 2021年-某局党组对于机构编制工作情况报告(汇编)
- 初中文言实词虚词归纳总结
- 2024年KUKA机器人培训:打造未来智能制造人才
- 六顶思维的帽子全文
- 2024年电影《信条》公开课教案:教学方法论
- 工业机器人编程:2024年安川机器人培训手册
- 2025版高考语文一轮复习专项对点练22鉴赏现代诗歌的语言和表达技巧含解析
- 2025届高考生物一轮复习课后限时集训2细胞中的元素及无机化合物含解析新人教版
- 正余弦定理知识点权威总结18页
- 国企纪检监察嵌入式监督的探索与实践
- 浅议小升初数学教学衔接
- 设备安装应急救援预案
- 深基坑工程降水技术及现阶段发展
- 暂堵压裂技术服务方案
- 《孔乙己》公开课一等奖PPT优秀课件
- 美的中央空调故障代码H系列家庭中央空调(第一部分多联机)
- 业主委员会成立流程图
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析练习(带答案)
- 广联达办公大厦工程施工组织设计
评论
0/150
提交评论