2025届云南省楚雄州南华县民中高二上数学期末调研模拟试题含解析_第1页
2025届云南省楚雄州南华县民中高二上数学期末调研模拟试题含解析_第2页
2025届云南省楚雄州南华县民中高二上数学期末调研模拟试题含解析_第3页
2025届云南省楚雄州南华县民中高二上数学期末调研模拟试题含解析_第4页
2025届云南省楚雄州南华县民中高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省楚雄州南华县民中高二上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知动点在直线上,过点作圆的切线,切点为,则线段的长度的最小值为()A. B.4C. D.2.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.3.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.4.执行如图所示的程序框图,则输出S的值是()A. B.C. D.5.如果向量,,共面,则实数的值是()A. B.C. D.6.“”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.抛物线的焦点到准线的距离()A.4 B.C.2 D.8.命题“,”的否定是()A., B.,C, D.,9.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的类似问题:把150个完全相同的面包分给5个人,使每个人所得面包数成等差数列,且使较大的三份面包数之和的是较小的两份之和,则最大的那份面包数为()A.30 B.40C.50 D.6010.已知函数,若对任意两个不等的正实数,,都有,则实数的最小值为()A. B.C. D.11.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.1512.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.36二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是___________.14.已知椭圆的右顶点为,为上一点,则的最大值为______.15.已知椭圆:的左右焦点分别为,为椭圆上的一点,与椭圆交于.若△的内切圆与线段在其中点处相切,与切于,则椭圆的离心率为_______16.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第七个孩子分得斤数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为等差数列,是各项均为正数的等比数列的前n项和,,,,在①;②;③.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择的第一个解答计分)(1)求数列和的通项公式;(2)求数列的前n项和.18.(12分)从①,②,③,这三个条件中任选一个,补充在下面问题中并作答:已知等差数列公差大于零,且前n项和为,,______,,求数列的前n项和.(注:如果选择多个条件分别解答,那么按照第一个解答计分)19.(12分)如图,在四棱柱中,侧棱底面,,,,,,,()(1)求证:平面;(2)若直线与平面所成角的正弦值为,求的值;(3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)20.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)21.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.22.(10分)已知函数.(1)讨论函数的单调性;(2)若函数有两个不同的零点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出的最小值,由切线长公式可结论【详解】解:由,得最小时,最小,而,所以故选:A.2、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.3、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.4、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C5、B【解析】设,由空间向量的坐标运算可得出方程组,即可解得的值.【详解】由于向量,,共面,设,可得,解得.故选:B.6、A【解析】根据题意,结合直线与圆的位置关系求出,即可求解.【详解】根据题意,由直线与圆相切,知圆心到直线的距离,解得或,因此“”是“直线与圆相切”的充分不必要条件.故选:A.7、A【解析】写出抛物线的标准方程,即可确定焦点到准线的距离.【详解】由题设,抛物线的标准方程为,则,∴焦点到准线的距离为4.故选:A.8、D【解析】由含量词命题否定的定义,写出命题的否定即可【详解】命题“,”的否定是:,,故选:D.9、C【解析】根据题意得到递增等差数列中,,,从而化成基本量,进行计算,再计算出,得到答案.【详解】根据题意,设递增等差数列,首项为,公差,则所以解得所以最大项.故选:C10、B【解析】不妨设,由题意,可得,构造函数,则在上单调递增,从而有在上恒成立,分离参数转化为最值即可求解.【详解】解:由题意,不妨设,因为对任意两个不等的正实数,,都有,所以,即,构造函数,则,所以在上单调递增,所以在上恒成立,即在上恒成立,当时,因为,所以,所以,实数的最小值为.故选:B.11、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.12、B【解析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】根据抛物线的定义知点P到焦点距离等于到准线的距离即可求解.【详解】因为抛物线方程为,所以准线方程,所以点到准线的距离为,故点到该抛物线焦点的距离.故答案为:14、【解析】设出点P的坐标,利用两点间距离公式建立函数关系,借助二次函数计算最值作答.【详解】椭圆的右顶点为,设点,则,即,且,于是得,因,则当时,,所以的最大值为.故答案为:15、【解析】利用椭圆及三角形内切圆的性质可得、,结合等边三角形的性质得的大小,在△中应用余弦定理得到a、c的齐次式,即可求离心率.【详解】由题意知:由内切圆的性质得:,由椭圆的性质,而,∴,∴由内切圆的性质得:再由椭圆的性质,得:,由此,△为等边三角形,可得,在△中,由余弦定理得:,解得,则,故答案为:.16、167【解析】由题设知8个孩子分得斤数是公差为17的等差数列,设第一个孩子分得斤,应用等差数列前n项和公式求,进而由等差数列通项公式求即可.【详解】由题意,设第一个孩子分得斤,则,所以,可得,故斤.故答案为:167.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)无论选择哪个条件答案均为;(2).【解析】(1)先根据题设条件求解,然后根据选择的条件求解;(2)先求,然后利用分组求和的方法求解.【小问1详解】设的公差为,因为,;所以,解得,所以.选①:设的公比为,则;由题意得,因为,所以,解得或(舍);所以.选②:由,当时,,因为,所以;当时,,整理得;即是首项和公比均为2的等比数列,所以.选③:因为,,所以,解得;所以.【小问2详解】由(1)得;所以.18、;【解析】将条件①②③转化为的形式,列方程组,并求解,写出的通项公式,从而表示出,利用裂项相消法求和.【详解】选①:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选②:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选③:设等差数列首项为,公差为,因为,,所以,所以,所以,所以【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列的和或差数列的求和19、(1)证明见解析(2)(3)【解析】(1)取得中点,连接,可证明四边形是平行四边形,再利用勾股定理的逆定理可得,即,又侧棱底面,可得,利用线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,由线面角的向量公式即可得出;(3)由题意可与左右平面,,上或下面,拼接得到方案,新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出【详解】(1)证明:取的中点,连接,,,四边形是平行四边形,,且,,,,又,侧棱底面,,,平面(2)以为坐标原点,、、的方向为轴的正方向建立空间直角坐标系,则,,,,,设平面的一个法向量为,则,取,则,设与平面所成角为,则,解得,故所求(3)由题意可与左右平面,,上或下面,拼接得到方案新四棱柱共有此4种不同方案写出每一方案下的表面积,通过比较即可得出【点睛】本题主要考查线面垂直的判定定理的应用,利用向量求线面角、柱体的定义应用和表面积的求法,意在考查学生的直观想象能力,逻辑推理能力,数学运算能力及化归与转化能力,属于中档题20、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.21、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2详解】设,联立解得和,,∴弦长.22、(1)答案见解析(2)【解析】(1)求函数的定义域及导函数,根据导数与函数的单调性关系判断函数的单调性;(2)结合已知条件,根据函数的单调性,极值结合零点存在性定理列不等式求实数的取值范围.【小问1详解】的定义域为,当时,恒成立,上单调递增,当时,在递减,在递增【小问2详解】当时,恒成立,上单调递增,所以至多存一个零点,不符题意,故舍去.当时,在递减,在递增;所以有极小值为构造函数,恒成立,所以在单调递减,注意到①当时,,则函数至多只有一个零点,不符题意,舍去.②当时,函数图象连续不间断,的极小值为,又函数在单调递减,所以在上存在唯一一个零点;,令,构造函数,恒成立.在单调递增,所以,即,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论