重难点专项突破08相似三角形中的“一线三等角”模型_第1页
重难点专项突破08相似三角形中的“一线三等角”模型_第2页
重难点专项突破08相似三角形中的“一线三等角”模型_第3页
重难点专项突破08相似三角形中的“一线三等角”模型_第4页
重难点专项突破08相似三角形中的“一线三等角”模型_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重难点专项突破08相似三角形中的“一线三等角”模型【知识梳理】一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。或叫“K字模型”。三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”【考点剖析】例1.如图,直角梯形ABCD中,AB//CD,,点E在边BC上,且, AD=10,求的面积.AABCDE【答案】24.【解析】,, . 又,. .. , ..在中,,..【总结】本题考查一线三等角模型的相似问题,还有外角知识、平行的判定等.例2.已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.【分析】(1)△ABC是等边三角形,得到∠B=∠C=60°,AB=AC,推出∠BAD=∠CDE,得到△ABD∽△DCE;(2)由△ABD∽△DCE,得到=,然后代入数值求得结果.【解答】(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE∴△ABD∽△DCE;(2)解:由(1)证得△ABD∽△DCE,∴=,设CD=x,则BD=3﹣x,∴=,∴x=1或x=2,∴DC=1或DC=2.【点评】本题考查了等边三角形的性质,相似三角形的判定和性质,注意数形结合和方程思想的应用.例3.已知,在等腰中,AB=AC=10,以BC的中点D为顶点作, 分别交AB、AC于点E、F,AE=6,AF=4,求底边BC的长.AABCDEF【答案】.【解析】, 而, . 又,. ,. .. , . 又,.【总结】本题是对“一线三等角”模型的考查.【过关检测】一.选择题(共3小题)1.(2020·安徽·校联考三模)如图,为的边上一点,,,则的长为(

)A. B. C. D.【答案】A【分析】根据已知证明△ADB∽△ABC,利用代值求解即可.【详解】∵,∴∠A=∠C,∠DBC=∠BDC,∵∠DBC=2∠A,∴∠BDC=∠A+∠ABD=2∠A,∴∠ABD=∠A=∠C,∴△ADB∽△ABC,AD=BD∴,设BD=AD=x,则,即,解得:(不符题意,舍去),∴,故选:A.【点睛】本题考查等腰三角形的判定与性质、相似三角形的判定与性质、解一元二次方程,熟练掌握相似三角形的判定与性质是解答的关键.2.(2017•利辛县一模)如图,D、E、F分别是等腰三角形ABC边BC、CA、AB上的点,如果AB=AC,BD=2,CD=3,CE=4,AE=,∠FDE=∠B,那么AF的长为()A.5.5 B.4 C.4.5 D.3.5【分析】注意到△BDF与△CED相似,利用相似比求出BF,然后得出AF的长度.【解答】解:∵AB=AC,∴∠B=∠C,∵∠FDE=∠B,∴∠BDF+∠BFD=∠BDF+∠EDC,∴∠BFD=∠CDE,∴△BDF∽△CED,∴,∴,∴BF=1.5,∴AF=AB﹣BF=AC﹣BF=AE+CE﹣BF=4.故选:B.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的性质,属于基础题.识别出图形中的“一线三等角”模型从而得出三角形相似是解本题的关键.3.(2022秋•瑶海区校级期中)如图,在△ABC中,∠BAC=90°,AB=AC=4,点D是边BC上一动点(不与B,C重合),∠ADE=45°,DE交AC于点E,下列结论:①△ADE与△ACD一定相似;②△ABD与△DCE一定相似;③当AD=3时,CE=;④0<CE≤2.其中正确的结论有几个?()A.4个 B.3个 C.2个 D.1个【分析】利用有两个角对应相等的两个三角形相似可以判定①②正确;根据相似三角形对应边成比例,利用△ADE∽△ACD得出比例式求得AE的长,进而得出③正确;利用判定③正确的结论,通过分析AD的取值范围即可得出④正确.【解答】解:∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC==4.∵∠ADE=45°,∴∠ADE=∠C=45°.∵∠DAE=∠CAD,∴△ADE∽△ACD.∴①正确;∵∠ADE=45°,∴∠ADB+∠EDC=180°﹣45°=135°.∵∠B=45°,∴∠ADB+∠BAD=180°45°=135°.∴∠BAD=∠EDC.∵∠B=∠C,∴△ABD∽△DCE.∴②正确;由①知:△ADE∽△ACD,∴.∴AD2=AE•AC.∴AE=.∴EC=AC﹣AE=4﹣=.∴③正确;∵点D是边BC上一动点(不与B,C重合),∴0<AD<4.∵垂线段最短,∴当AD⊥BC时,AD取得最小值=BC=2.∴2≤AD<4.∵AD2=AE•AC,∴AE==.∴2≤AE<4.∵EC=AC﹣AE=4﹣,∴0<CE≤2.∴④正确.综上,正确的结论有:①②③④.故选:A.【点评】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质,三角形的内角和定理,利用有两个角对应相等的两个三角形相似进行相似三角形的判定是解题的关键.二、填空题(共2题)4.(2022·安徽·九年级专题练习)如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,在点E从A到D的运动过程中,点G的运动路径=________,△CEF面积的最小值是________.【答案】215【分析】连接BD,取BD的中点M,AB的中点N,连接MN,因为GN为△ABE的中位线,故G的运动路径为线段MN;过点F作AD的垂线交AD的延长线于点H,则△FEH∽△EBA,设AE=x,可得出△CEF面积与x的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:连接BD,取BD的中点M,AB的中点N,连接MN,∵E为边AD上一个动点,点E从A到D的运动,G是BE的中点∴当E在A点时,BE与AB重合,G与AB的中点N重合,当E运动到D点时,BE与BD重合,G与BD的中点M重合,∴E在从A到D的运动过程中,MN为△ABE的中位线,∴.故G的运动路径=2,过点F作AD的垂线交AD的延长线于点H,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°∠BEA=∠EBA,∴△FEH∽△EBA,∴为的中点,∴设AE=x,∵AB∴HF

∴当时,△CEF面积的最小值故答案为:2,15.【点睛】本题通过构造K形图,考查了三角形的中位线和相似三角形的判定与性质,建立△CEF面积与AE长度的函数关系式是解题的关键.5.(2022秋·安徽淮北·九年级校考阶段练习)如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x的函数关系式为________【答案】【分析】根据题意证明,列出比例式即可求得y关于x的函数关系式【详解】解:∠A=∠D=120°,∠BEF=120°,AB=6、AD=4,AE=x、DF=y,即故答案为:【点睛】本题考查了相似三角形的性质与判定,函数解析式,掌握相似三角形的性质与判定是解题的关键.三.解答题(共5小题)6.(2021秋•大观区校级期中)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:=;(2)若OP与PA的比为1:2,求边AB的长.【分析】(1)利用“一线三直角”证明△OCP∽△PDA,继而得出=;(2)利用相似三角形的性质求出PC的长,设AB=x,则DC=x,AP=x,DP=x﹣4,利用勾股定理列出方程,解方程即可求得AB的长度.【解答】(1)证明:由折叠的性质可知,∠APO=∠B=90°,∴∠APD+∠OPC=90°,∵四边形ABCD为矩形,∴∠D=∠C=90°,∴∠POC+∠OPC=90°,∴∠APD=∠POC,∴△OCP∽△PDA,∴=;(2)解:∵△OCP∽△PDA,∴,∵OP与PA的比为1:2,AD=8,∴,∴PC=4,设AB=x,则DC=x,AP=x,DP=x﹣4,在Rt△APD中,AP2=AD2+PD2,∴x2=82+(x﹣4)2,解得:x=10,∴AB=10.【点评】本题考查的是矩形的性质、折叠的性质、相似三角形的判定和性质,掌握折叠是一种轴对称,折叠前后的图形对应角相等、对应边相等,灵活运用相关的性质是解题的关键.7.(2022•砀山县模拟)如图1,在四边形ABCD中,AC是对角线,且AB=AC.F是BC边上一动点,连接AF,DF,DF交AC于点E,其中∠DAF=90°,∠AFD=∠B.(1)求证:AC•EC=BF•CF;(2)若AB=AC=10,BC=16.①如图2,若DF∥AB,求的值;②如图3,若DF=DC,求△DCF的面积.【分析】(1)根据等腰三角形的性质得出∠ABF=∠FCE,再根据∠AFC=∠AFE+∠EFC=∠ABF+∠FAB得出∠EFC=∠FAB,证△ABF∽△FCE,根据线段比例关系即可得出结论;(2)①证△ABF∽△CBA,得,再根据,最后利用平行线分线段成比例得出得出结论即可;②过点A,D分别作AM⊥BC,DN⊥FC,垂足分别为M,N,过点A作AG⊥DN于点G,根据三角函数得出,证△AMF∽△AGD,根据线段比例关系分别求出CF和DN的值即可求出△DCF的面积.【解答】(1)证明:∵AB=AC,∴∠ABF=∠FCE,∵∠AFD=∠B,∠AFC=∠AFE+∠EFC=∠B+∠FAB,∴∠EFC=∠FAB,∴△FAB∽△EFC,∴,即AB•EC=BF•CF;(2)解:①∵DF∥AB,∴∠BAF=∠AFE,∴∠BAF=∠ACB,又∵∠ABF=∠CBA,∴△FAB∽△ACB,∴,∴,∴,∵DF∥AB,∴;②如图,过点A,D分别作AM⊥BC,DN⊥FC,垂足分别为M,N,过点A作AG⊥DN于点G,在△ABC中,AB=AC,AM⊥BC,∴BM=CM=8,则,∴,∵∠AFD=∠B,∠DAF=90°,∴,∵∠AMN=∠GNM=∠AGN=90°,∴四边形MNGA是矩形,∴GN=AM=6,∠MAG=90°,又∵∠FAD=90°,则∠FAM+∠FAG=∠DAG+∠FAG=90°,∴∠FAM=∠DAG.又∵∠AMF=∠AGD=90°,∴△FAM∽△DAG,∴,则,∴,则,∵DF=CD,∴CF=2CN=7,∴FM=CM﹣CF=1,由△FAM∽△DAG,得==,∴DG=,∴DN=DG+GN=+6=,∴S△DCF=CF•DN=×=.【点评】本题主要考查相似形综合题,熟练掌握相似三角形的判定和性质及平行线分线段成比例等知识是解题的关键.8.(2017秋•固镇县月考)已知:如图.△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°(1)求证:△ABD∽△DCE;(2)如果,AB=3,EC=,求DC的长.【分析】(1)△ABC是等边三角形,得到∠B=∠C=60°,AB=AC,推出∠BAD=∠CDE,得到△ABD∽△DCE;(2)由△ABD∽△DCE,得到=,然后代入数值求得结果.【解答】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE∴△ABD∽△DCE;(2)由(1)证得△ABD∽△DCE,∴=,设CD=x,则BD=3﹣x,∴=,∴x=1或x=2,经检验,x=1或x=2是原分式方程的解,∴DC=1或DC=2.【点评】本题考查了等边三角形的性质,相似三角形的判定和性质,注意数形结合和方程思想的应用.9.(2022秋·安徽滁州·九年级校联考期中)如图,在中,于,于,试说明:(1)(2)【答案】(1)见解析;(2)见解析【分析】(1)直接根据相似三角形的判定证明即可;(2)首先根据相似三角形的性质得出,进而证明△ADE∽△ACB,最后根据相似三角形的性质即可证明.【详解】解:(1)∵CD⊥AB于D,BE⊥AC于E,∴∠AEB=∠ADC=90°,在△ABE和△ACD中∴△ABE∽△ACD;(2)∵△ABE∽△ACD,∴.在△ADE和△ACB中,∴△ADE∽△ACB∴∴AD·BC=DE·AC.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.10.(2020·安徽合肥·校联考一模)如图,在矩形ABCD中,点E是对角线AC上一动点,连接BE,作CF⊥BE分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论