第09讲平面直角坐标系中的规律探索问题求解策略(原卷版+解析)-2021-2022学年七年级数学下册常考点(数学思想+解题技巧+专项突破+精准提升)_第1页
第09讲平面直角坐标系中的规律探索问题求解策略(原卷版+解析)-2021-2022学年七年级数学下册常考点(数学思想+解题技巧+专项突破+精准提升)_第2页
第09讲平面直角坐标系中的规律探索问题求解策略(原卷版+解析)-2021-2022学年七年级数学下册常考点(数学思想+解题技巧+专项突破+精准提升)_第3页
第09讲平面直角坐标系中的规律探索问题求解策略(原卷版+解析)-2021-2022学年七年级数学下册常考点(数学思想+解题技巧+专项突破+精准提升)_第4页
第09讲平面直角坐标系中的规律探索问题求解策略(原卷版+解析)-2021-2022学年七年级数学下册常考点(数学思想+解题技巧+专项突破+精准提升)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点四平面直角坐标系中的变化规律(原卷版)专题典例剖析+针对训练类型一点的运动规律典例1如图是一回形图,其回形通道的宽和OB的长均为1,回形线与射线OA交于A1,A2,A3,….若从O点到A1点的回形线为第1圈(长为7),从A1点到A2点的回形线为第2圈,…,依此类推.则第10圈的长为.典例2(2021秋•柯桥区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1) B.(2022,2) C.(2022,﹣2) D.(2022,0)针对训练11.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2021次碰到长方形的边时,点P的坐标为()A.(3,0)B.(7,4)C.(8,3)D.(1,4)2.(2021秋•庐阳区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(﹣2020,0) B.(﹣2020,1) C.(﹣2020,2) D.(2020,0)3.(2020·南通崇川区期末)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50) B.(﹣25,50) C.(26,50) D.(25,50)类型二图形的变化规律典例3如图所示,正方形ABCD的顶点坐标分别为A(1,1),B(3,1),C(3,3),D(1,3).(1)在同一直角坐标系中,将正方形向左平移2个单位,画出相应的图形,并写出各点的坐标.(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标.(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?典例4(2021秋•管城区校级期末)如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2021的横坐标为()A.﹣1008 B.﹣1010 C.1012 D.﹣1012针对训练24.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为,An的坐标(用n的代数式表示)为.(2)2020米长的护栏,需要两种正方形各多少个?5.(2021秋•南海区期末)如图,直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7…,是斜边在x轴上,斜边长分别为2,4,6,8,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2021的坐标为.专题提优训练1.(2021春•珠海期中)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0) B.(0,2) C.(﹣1,﹣2) D.(0,1)2.(2021•张湾区模拟)如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如图顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2021个点的坐标为()A.(46,4) B.(46,3) C.(45,4) D.(45,5)3.(2021春•绥中县期末)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为()A.(﹣505,﹣505) B.(﹣505,506) C.(506,506) D.(505,﹣505)4.(2020·南通海安市期中)如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44) B.(36,45) C.(37,45) D.(44,35)5.(2021春•盐湖区期末)如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…按此规律,点A2022的坐标为()A.(505,505) B.(506,﹣505) C.(506,506) D.(﹣506,506)6.(2021春•九龙坡区期中)在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021) B.(674,2021) C.(﹣673,2021) D.(﹣674,2021)7.(2021·合肥四十五中期中)如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到点(1,0),第二次运动到点(2,-2),第3次运动到点(3,0),…按这样的运动规律,动点P第2021次运动到的点的坐标是.8.(2021秋•同安区期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.9.(2020·芜湖镜湖区期末)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,An,若点A的坐标为(a,b),则点A2021的坐标为.10.(2021秋•依安县期末)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2021的坐标是.9.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请观察图中每一个正方形边上的整点的个数,解决下列问题:(1)请你按此规律画出由里向外的第四个正方形(用实线);(2)计算出由里向外第n个正方形四边上的整点个数的总和.(用含有n的代数式表示)11.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向左、向下、向左的方向依次不断移动得A1,A2,A3,A4,A5,…,每次移动的距离分别为1,1,1,2,2,2,3,3,3…,其行走路线如图所示:(1)填写下列各点的坐标:A3、A6、A9;(2)写出点A3n的坐标(n为正整数);(3)求蚂蚁从原点O到点A33移动的距离.12.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1第二次将OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)求三角形OAB的面积;(2)写出三角形OA4B4的各个顶点的坐标;(3)按此图形变化规律,你能写出三角形OAnBn的面积与三角形OAB的面积的大小关系吗?考点四平面直角坐标系中的变化规律(解析版)专题典例剖析+针对训练类型一点的运动规律典例1如图是一回形图,其回形通道的宽和OB的长均为1,回形线与射线OA交于A1,A2,A3,….若从O点到A1点的回形线为第1圈(长为7),从A1点到A2点的回形线为第2圈,…,依此类推.则第10圈的长为.思路引领:如图,以点O为原心,建立平面直角坐标系,则A1,A2,A3,…的坐标分别为(-1,0),(-2,0),(-3,0),…,A10的坐标为(-10,0),然后大致描出第10圈的形状,很轻松求出第10圈的长.解:观察图形发现:

第一圈的长是2(1+2)+1=7;第二圈的长是2(3+4)+1=15;

第三圈的长是2(5+6)+1=23;则第n圈的长是2(2n-1+2n)+1=8n-1.

当n=10时,原式=80-1=79.

故答案为79.题眼直击:坐标表示图形,规律探究.点睛:依次计算第一圈长,第二圈长,……,探究这几个数的一般规律性,然后应用规律求出第10圈.典例2(2021秋•柯桥区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1) B.(2022,2) C.(2022,﹣2) D.(2022,0)思路引领:观察图象,结合第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,运动后的点的坐标特点,分别得出点P运动的横坐标和纵坐标的规律,再根据循环规律可得答案.解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.点睛:本题考查了规律型点的坐标,数形结合并从图象中发现循环规律:纵坐标每6次运动组成一个循环是解题的关键.针对训练11.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2021次碰到长方形的边时,点P的坐标为()A.(3,0)B.(7,4)C.(8,3)D.(1,4)答案:D点拨:如图,经过6次反弹后动点回到出发点(0,3),因为2021÷6=336…5,所以当点P第2021次碰到矩形的边时为第336个循环组的第5次反弹,点P的坐标为(1,4).2.(2021秋•庐阳区期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(﹣2020,0) B.(﹣2020,1) C.(﹣2020,2) D.(2020,0)思路引领:分析动点P的运动规律找到循环规律即可.解:动点P运动规律可以看做每运动四次一个循环,每个循环向左移动4个单位,则2020=505×4,所以,前505次循环运动点P共向左运动505×4=2020个单位,且在x轴上,故动点P坐标为(﹣2020,0).故选:A.点睛:本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合的思想解决问题.3.(2020·南通崇川区期末)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50) B.(﹣25,50) C.(26,50) D.(25,50)答案:C点拨:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:Pn的横坐标为n÷4+1(n是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).类型二图形的变化规律典例3如图所示,正方形ABCD的顶点坐标分别为A(1,1),B(3,1),C(3,3),D(1,3).(1)在同一直角坐标系中,将正方形向左平移2个单位,画出相应的图形,并写出各点的坐标.(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标.(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?思路引领:(1)让正方形ABCD的四个顶点分别向左平移2个单位,画出相应图形,根据各点所在象限的符号和距坐标轴的距离可得各点的坐标;

(2)让正方形ABCD的四个顶点分别向下平移2个单位,画出相应图形,根据各点所在象限的符号和距坐标轴的距离可得各点的坐标;

(3)从上二题中可以看出正方形ABCD→正方形A′B′C′D′各点的横坐标都减去2,纵坐标不变;

正方形ABCD→正方形A″B″C″D″各点的纵坐标都减去2,横坐标不变.解:(1)将正方形向左平移2个单位,也就是横坐标都减去2,纵坐标不变.如图1所示:A(-1,1),B(1,1),C(1,3),D(-1,3).(2)将正方形向下平移2个单位,也就是横坐标不变,纵坐标减去2.如图2所示.A(1,-1),B(3,-1),C(3,1),D(1,1).图1图2(3)在(1)中,各点的横坐标都减少了2,纵坐标未变;在(2)中,横坐标未变纵坐标都减少了2.点睛:本题考查的是平移变换作图.作平移图形时,找关键点的对应点是关键的一步.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.典例4(2021秋•管城区校级期末)如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2021的横坐标为()A.﹣1008 B.﹣1010 C.1012 D.﹣1012思路引领:根据图形先确定出A2021是第1010个与第1011个等腰直角三角形的公共点,再写出前几个三角形的相应的点的横坐标,从而得到点的横坐标的变化规律,然后写出即可.解:∵A3是第一与第二个等腰直角三角形的公共点,A5是第二与第三个等腰直角三角形的公共点,A7是第三与第四个等腰直角三角形的公共点,A9是第四与第五个等腰直角三角形的公共点,…,∵2021=1010×2+1,∴A2021是第1010个与第1011个等腰直角三角形的公共点,∴A2021在x轴正半轴,∵OA5=4,OA9=6,OA13=8,…,∴OA2021=(2021+3)÷2=1012,∴点A2021的坐标为(1012,0).故选:C.点睛:本题考查了点的坐标规律的变化,仔细观察图形,先确定点A2021是第1010个与第1011个等腰直角三角形的公共点并确定出在x轴正半轴是解题的关键.针对训练24.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为,An的坐标(用n的代数式表示)为.(2)2020米长的护栏,需要两种正方形各多少个?解:(1)(8,2)(3n-1,2)理由:∵A1的坐标为(2,2)、A2的坐标为(5,2),∴A1,A2,A3,…,An各点的纵坐标均为2,∵小正方形的边长为1,∴A1,A2,A3,…,An各点的横坐标依次大3,∴A3(5+3,2),An[2+3(n-1),2],即A3(8,2),An(3n-1,2).(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.5.(2021秋•南海区期末)如图,直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7…,是斜边在x轴上,斜边长分别为2,4,6,8,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2021的坐标为.思路引领:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2020÷4=505,A2020在第四象限,横坐标为2,再根据纵坐标变化找到规律即可解.解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,∴A3(0,0),A7(﹣2,0),A11(﹣4,0)…,∵2021÷4=505……1,∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,∴A2021的坐标为(1012,0).故答案为:(1012,0).点睛:本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的脚标是奇数时的变化规律是解题的关键.专题提优训练1.(2021春•珠海期中)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0) B.(0,2) C.(﹣1,﹣2) D.(0,1)思路引领:由点A、B、C的坐标可得出AB、BC的长度,从而可得四边形ABCD的周长,再根据12=1×10+2即可得出细线另一端所在位置的点的坐标.解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2),∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3,∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D.点睛:本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.2.(2021•张湾区模拟)如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如图顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2021个点的坐标为()A.(46,4) B.(46,3) C.(45,4) D.(45,5)思路引领:观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2021点是(45,4).故选:C.点睛:本题考查了点的坐标,观察出点的个数与横坐标存在平方关系是解题的关键.3.(2021春•绥中县期末)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为()A.(﹣505,﹣505) B.(﹣505,506) C.(506,506) D.(505,﹣505)思路引领:根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2021的在第三象限的角平分线上,且横纵坐标的绝对值=(2021﹣1)÷4,再根据第三项象限内点的符号得出答案即可.解:∵2021÷4=505•••1,∴点P2021的在第三象限的角平分线上,∵点P5(﹣1,﹣1),∴点P2021的在第三象限的角平分线上,且横纵坐标的绝对值=(2021﹣1)÷4,∴点P2021(﹣505,﹣505).故选:A.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.4.(2020·南通海安市期中)如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44) B.(36,45) C.(37,45) D.(44,35)答案:D点拨:要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…于是会出现:(44,44)点处粒子运动了44×45=1980分钟,此时粒子会将向下移动.从而在运动了1989分钟后,粒子所在位置为(44,35).5.(2021春•盐湖区期末)如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…按此规律,点A2022的坐标为()A.(505,505) B.(506,﹣505) C.(506,506) D.(﹣506,506)思路引领:经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象限的点A2(1,1),A6(2,2),A10(3,3)…观察易得到点的坐标=循环次数+1.解:由题可知第一象限的点:A2,A6,A10…角标除以4余数为2;第二象限的点:A3,A7,A11…角标除以4余数为3;第三象限的点:A4,A8,A12…角标除以4余数为0;第四象限的点:A5,A9,A13…角标除以4余数为1;由上规律可知:2022÷4=505…2,∴点A2022在第一象限,纵坐标为505+1=506,横坐标为505+1=506,∴A2022的坐标是(506,506).故选:C.点睛:本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,解题的关键是探究规律,寻找规律,利用规律解决问题,属于中考填空题中的压轴题.6.(2021春•九龙坡区期中)在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021) B.(674,2021) C.(﹣673,2021) D.(﹣674,2021)思路引领:根据前几个点的坐标寻找规律即可求解.解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.点睛:本题考查了点的坐标规律,解决本题的关键是找出A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数).7.(2021·合肥四十五中期中)如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到点(1,0),第二次运动到点(2,-2),第3次运动到点(3,0),…按这样的运动规律,动点P第2021次运动到的点的坐标是.答案:(2021,0)点拨:点P的运动规律是每运动四次向右平移四个单位,∵2021=505×4+1,∴动点P第2021次运动时向右505×4+1=2021个单位,∴点P此时坐标为(2021,0).8.(2021秋•同安区期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A2021的坐标为.思路引领:观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),由2021是奇数,且2021=2n﹣1,则可求A2n﹣1(3032,1010).解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵2021是奇数,且2021=2n﹣1,∴n=1011,∴A2n﹣1(3032,1010),故答案为(3032,1010).点睛:本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.9.(2020·芜湖镜湖区期末)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,An,若点A的坐标为(a,b),则点A2021的坐标为.答案:(-b+1,a+1)点拨:∵A的坐标为(a,b),∴A1(-b+1,a+1),A2(-a,-b+2),A3(b-1,-a+1),A4(a,b),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505余1,∴点A2021的坐标与A1的坐标相同,为(-b+1,a+1).10.(2021秋•依安县期末)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2021的坐标是(20212,−3思路引领:每6个点的纵坐标规律:32,0,32,0,−32,0,点的横坐标规律:12,1,3解:每6个点的纵坐标规律:32,0,32,0,∵2021÷6=336…5,∴点P2021的纵坐标为−3动点P的横坐标规律:12,1,32,2,52∴点P2021的横坐标为20212∴点P2021的坐标(20212,−故答案为(20212,−点睛:本题考查点的规律;理解题意,根据所给图形的特点,结合平面直角坐标系中点的特点及正三角形边的特点,确定点的坐标规律是解题的关键.9.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请观察图中每一个正方形边上的整点的个数,解决下列问题:(1)请你按此规律画出由里向外的第四个正方形(用实线);(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论