版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京市梅山高级中学数学高三第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,且,则m=()A.−8 B.−6C.6 D.82.已知实数满足则的最大值为()A.2 B. C.1 D.03.已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为()A. B. C. D.4.已知函数,则()A.2 B.3 C.4 D.55.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种 B.70种 C.75种 D.150种6.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.7.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件8.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.9.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.10.如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为()A. B.C. D.11.已知(i为虚数单位,),则ab等于()A.2 B.-2 C. D.12.集合的子集的个数是()A.2 B.3 C.4 D.8二、填空题:本题共4小题,每小题5分,共20分。13.将函数的图象向左平移个单位长度,得到一个偶函数图象,则________.14.设,则______.15.从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,则事件“抽到的产品不是一等品”的概率为________16.已知等差数列满足,,则的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100cm,试判断该零件是否属于“不合格”的零件.18.(12分)已知函数,曲线在点处的切线方程为.(Ⅰ)求,的值;(Ⅱ)若,求证:对于任意,.19.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项.(1)求;(2)设数列满足,,求数列的通项公式.20.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.21.(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.安全意识强安全意识不强合计男性女性合计(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82822.(10分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面时,求平面与平面所成的二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.2、B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.3、D【解析】
利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.4、A【解析】
根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.5、C【解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C.【点睛】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.6、A【解析】
由,两边平方后展开整理,即可求得,则的长可求.【详解】解:,,,,,,.,,故选:.【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.7、D【解析】
由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.8、C【解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.9、C【解析】
列出循环的每一步,可得出输出的的值.【详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.10、A【解析】
易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【详解】由已知,得,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.11、A【解析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,,得,..故选:.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.12、D【解析】
先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称即:本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.14、121【解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【详解】令,得,令,得,两式相加,得,所以.故答案为:.【点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.15、0.35【解析】
根据对立事件的概率和为1,结合题意,即可求出结果来.【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,,抽到不是一等品的概率是,故答案为:.【点睛】本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题.16、11【解析】
由等差数列的下标和性质可得,由即可求出公差,即可求解;【详解】解:设等差数列的公差为,,又因为,解得故答案为:【点睛】本题考查等差数列的通项公式及等差数列的性质的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)66.5(2)属于【解析】
(1)利用频率分布直方图的平均数公式求解;(2)求出,即可判断得解.【详解】(1)(2)所以该零件属于“不合格”的零件【点睛】本题主要考查频率分布图中平均数的计算和应用,意在考查学生对这些知识的理解掌握水平.18、(Ⅰ),(Ⅱ)见解析【解析】
(1)根据导数的运算法则,求出函数的导数,利用切线方程求出切线的斜率及切点,利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出,值;(2)首先将不等式转化为函数,即将不等式右边式子左移,得,构造函数并判断其符号,这里应注意的取值范围,从而证明不等式.【详解】解:(1)由于直线的斜率为,且过点,故即解得,.(2)由(1)知,所以.考虑函数,,则.而,故当时,,所以,即.【点睛】本题考查了利用导数求切线的斜率,利用函数的导数研究函数的单调性、和最值问题,以及不等式证明问题,考查了分析及解决问题的能力,其中,不等式问题中结合构造函数实现正确转换为最大值和最小值问题是关键.19、(1);(2).【解析】
(1)根据题意,建立首项和公差的方程组,通过基本量即可写出前项和;(2)由(1)中所求,结合累加法求得.【详解】(1)由题意可得即又因为,所以,所以.(2)由条件及(1)可得.由已知得,所以.又满足上式,所以【点睛】本题考查等差数列通项公式和前项和的基本量的求解,涉及利用累加法求通项公式,属综合基础题.20、(1);(2).【解析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有,解得;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,①当在上是单调增函数,则,解得,检验符合;②当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【点睛】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。21、(Ⅰ).0.2(Ⅱ)见解析,有的把握认为交通安全意识与性别有关(Ⅲ)见解析,【解析】
(Ⅰ)直接根据频率和为1计算得到答案.(Ⅱ)完善列联表,计算,对比临界值表得到答案.(Ⅲ)的取值为,计算概率得到分布列,计算数学期望得到答案.【详解】(Ⅰ),解得.所以该城市驾驶员交通安全意识强的概率.(Ⅱ)安全意识强安全意识不强合计男性163450女性44650合计2080100,所以有的把握认为交通安全意识与性别有关(Ⅲ)的取值为所以的分布列为期望.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和综合应用能力.22、(1)见解析;(2)【解析】
(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度二手房贷款买卖绿色通道合同3篇
- 网站培训课程设计
- 船舶英语课程设计说明书
- 自然类研学旅行课程设计
- 自制香薰蜡烛课程设计
- 2024年电影项目策划与制作全权委托协议3篇
- 二零二五年出租车司机驾驶疲劳检测与雇佣合同3篇
- 池州学院《大数据挖掘及应用》2023-2024学年第一学期期末试卷
- 承德应用技术职业学院《歌曲写作1》2023-2024学年第一学期期末试卷
- 成都银杏酒店管理学院《城市河湖水生态与水环境》2023-2024学年第一学期期末试卷
- 幼儿绘本故事:小福变成大汉堡
- 常宝精特能源概况
- 第六章传质基本概念
- 政治经济学结构图解
- 服装品质管理人员工作手册
- 国家开放大学电大专科《兽医基础》2023-2024期末试题及答案试卷编号:2776
- 初三毕业班后期管理措施
- 示教机械手控制系统设计
- 氧化铝生产工艺教学(拜耳法)
- 选矿学基础PPT课件
- 安利食品经销商合同协议范本模板
评论
0/150
提交评论