2025届浙江省嘉兴市第五高级中学高一数学第一学期期末检测模拟试题含解析_第1页
2025届浙江省嘉兴市第五高级中学高一数学第一学期期末检测模拟试题含解析_第2页
2025届浙江省嘉兴市第五高级中学高一数学第一学期期末检测模拟试题含解析_第3页
2025届浙江省嘉兴市第五高级中学高一数学第一学期期末检测模拟试题含解析_第4页
2025届浙江省嘉兴市第五高级中学高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省嘉兴市第五高级中学高一数学第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在函数的图象上,则下列各点也在该函数图象上的是()A. B.C. D.2.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.3.已知角的终边经过点,则的值为()A.11 B.10C.12 D.134.已知,若角的终边经过点,则的值为()A. B.C.4 D.-45.已知,则A. B.C. D.6.化简()A. B.C. D.7.已知是R上的奇函数,且对,有,当时,,则()A.40 B.C. D.8.若,则()A. B.C. D.29.已知函数在内是减函数,则的取值范围是A. B.C. D.10.长方体中,,,则直线与平面ABCD所成角的大小A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,三点共线,则实数的值是__________12.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____13.=___________14.函数的单调递减区间为__15.函数y=的定义域是______.16.函数,其中,,的图象如图所示,求的解析式____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在边长为2的菱形中,,为的中点.(1)用和表示;(2)求的值.18.已知集合,.(1)若,求实数的值;(2)若,求实数的取值范围.19.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足,,经测算,在某一时段,地铁载客量与发车时间间隔t相关,当时地铁可达到满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为.(1)求的解析式;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?20.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离21.已知函数,.(1)求函数图象的对称轴的方程;(2)当时,求函数的值域;(3)设,存在集合,当且仅当实数,且在时,不等式恒成立.若在(2)的条件下,恒有(其中),求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意可得,再依次验证四个选项的正误即可求解.【详解】因为点在函数的图象上,所以,,故选项A不正确;,故选项B不正确;,故选项C不正确;,故选项D正确.故选:D2、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.3、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论4、A【解析】先通过终边上点的坐标求出,然后代入分段函数中求值即可.【详解】解:因为角的终边经过点所以所以所以故选A.【点睛】本题考查了任意角三角函数的定义,分段函数的计算求值,属于基础题.5、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质6、D【解析】利用辅助角公式化简即可.【详解】.故选:D7、C【解析】根据已知和对数运算得,,再由指数运算和对数运算法则可得选项.【详解】因为,,故,.∵,故.故选:C【点睛】关键点点睛:解决本题类型的问题的关键在于:1、由已知得出抽象函数的周期;2、根据函数的周期和对数运算法则将自变量转化到已知范围中,可求得函数值.8、B【解析】应用倍角正余弦公式及商数关系将目标式化为,结合已知即可求值.【详解】由题意知,,故选:B.9、B【解析】由题设有为减函数,且,恒成立,所以,解得,选B.10、B【解析】连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【点睛】本题考查了线面角的求法,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】,,三点共线,,即,解得,故答案为.12、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.13、【解析】tan240°=tan(180°+60°)=tan60°=,故答案为:14、【解析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:15、【解析】要使函数有意义,需满足,函数定义域为考点:函数定义域16、【解析】首先根据函数的最高点与最低点求出A,b,然后由图像求出函数周期从而计算出,再由函数过点求出.【详解】,,,解得,则,因为函数过点,所以,,解得因为,所以,.故答案为:【点睛】本题考查由图像确定正弦型函数的解析式,第一步通过图像的最值确定A,b的值,第二步通过周期确定的值,第三步通过最值点或者非平衡位置的点以及三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)-1【解析】(1)由平面向量基本定理可得:.(2)由数量积运算可得:,运算可得解.【详解】解:(1).(2)【点睛】本题考查了平面向量基本定理及数量积运算,属基础题.18、(1)(2)或【解析】(1)求出集合,再根据列方程求解即可;(2)根据分,讨论求解.【小问1详解】由已知得,解得;【小问2详解】当时,,得当时,或,解得或,综合得或.19、(1);(2)分钟.【解析】(1)时,求出正比例系数k,写出函数式即可得解;(2)求出每一段上的最大值,再比较大小即可得解.【详解】(1)由题意知,(k为常数),因,则,所以;(2)由得,即,①当时,,当且仅当等号成立;②当时,在[10,20]上递减,当时Q取最大值24,由①②可知,当发车时间间隔为分钟时,该时段这条线路每分钟的净收益最大,最大为120元.20、(1)见解析;(2)【解析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离【详解】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因为长方形ABCD,DC=CN=2,所以四边形DCNM是正方形,∴DN⊥CM,因为平面MNFE⊥平面ABCD,FN⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因为CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面FDM的距离d===【点睛】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题21、(1);(2);(3).【解析】(1)利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的对称性得解;(2)令,换元,化函数为的二次函数,求出,由此可值域;(3)由题意利用分离参数法、换元法、基本不等式先求出集合,根据(2)中范围得出的范围,再由可得的范围【详解】解:(1)令,得所以函数图象的对称轴方程为:(2)由(1)知,,当时,,∴,,即令,则,,由得,∴当时,有最小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论