版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省滨州市惠民县中学高一数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若,,互不相等,且,则的取值范围是()A. B.C. D.2.“角为第二象限角”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.已知函数的部分图象如图所示,则的解析式可能为()A. B.C. D.4.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.6005.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数A. B.2C.3 D.2或6.已知函数且,则函数恒过定点()A. B.C. D.7.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)8.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.29.已知角的终边在第三象限,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.设,则“”是“”的()条件A.必要不充分 B.充分不必要C.既不充分也不必要 D.充要二、填空题:本大题共6小题,每小题5分,共30分。11.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________12.已知α为第二象限角,且则的值为______.13.函数在区间上的单调性是______.(填写“单调递增”或“单调递减”)14.函数,则________15.幂函数的图象经过点,则=____.16.设,向量,,若,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,求以及的值18.已知函数f(1)求f-23(2)作出函数的简图;(3)由简图指出函数的值域;(4)由简图得出函数的奇偶性,并证明.19.化简求值:(1)(2).20.已知(1)求;(2)若,求.21.计算求值:(1)(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】画出图像,利用正弦函数的对称性求出,再结合的范围即可求解.【详解】不妨设,画出的图像,即与有3个交点,由图像可知,关于对称,即,令,解得,所以,故,.故选:A.2、B【解析】利用充分条件和必要条件的定义判断.【详解】当角为第二象限角时,,所以,故充分;当时,或,所以在第二象限或在第三象限,故不必要;故选:B3、C【解析】根据奇偶性排除A和D,由排除B.【详解】由图可知,的图象关于原点对称,是奇函数,,,则函数,是偶函数,排除A和D.当时,恒成立,排除B.故选:C4、A【解析】频数为考点:频率频数的关系5、A【解析】根据幂函数的定义,求出m的值,代入判断即可【详解】函数是幂函数,,解得:或,时,,其图象与两坐标轴有交点不合题意,时,,其图象与两坐标轴都没有交点,符合题意,故,故选A【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题6、D【解析】利用对数函数过定点求解.【详解】令,解得,,所以函数恒过定点,故选:D7、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查8、D【解析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【点睛】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题9、D【解析】根据角的终边所在象限,确定其正切值和余弦值的符号,即可得出结果.【详解】角的终边在第三象限,则,,点P在第四象限故选:D.10、B【解析】根据充分条件与必要条件的概念,可直接得出结果.【详解】若,则,所以“”是“”的充分条件;若,则或,所以“”不是“”的必要条件;因此,“”是“”的充分不必要条件.故选:B【点睛】本题主要考查充分不必要条件的判定,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用12、【解析】根据已知求解得出,再利用诱导公式和商数关系化简可求【详解】由,得,得或.α为第二象限角,,.故答案:.13、单调递增【解析】求出函数单调递增区间,再判断作答.【详解】函数的图象对称轴为,因此,函数的单调递增区间为,而,所以函数在区间上的单调性是单调递增.故答案为:单调递增14、【解析】利用函数的解析式可计算得出的值.【详解】由已知条件可得.故答案为:.15、2【解析】根据幂函数过点,求出解析式,再有解析式求值即可.【详解】设,则,所以,故,所以.故答案为:16、【解析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【详解】∵,向量,,∴,∴,∵,∴故答案为:.【点睛】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】根据同角三角函数,求出,;再利用两角和差公式求解.【详解】,,【点睛】本题考查同角三角函数和两角和差公式,解决此类问题要注意在求解同角三角函数值时,角所处的范围会影响到函数值的正负.18、(1)f(-23)=-(2)作图见解析;(3)[-1,1(4)f(x)为奇函数,证明见解析.【解析】(1)根据对应区间,将自变量代入解析式求值即可.(2)应用五点法确定点坐标列表,再描点画出函数图象.(3)由(2)图象直接写出值域.(4)由(2)图象判断奇偶性,再应用奇偶性定义证明即可.【小问1详解】由解析式知:f(-23)=【小问2详解】由解析式可得:x-2-1012f(x)0-1010∴f(x)的图象如下:【小问3详解】由(2)知:f(x)的值域为[-1,1【小问4详解】由图知:f(x)为奇函数,证明如下:当0<x<2,-2<-x<0时,f(-x)=(-x)当-2<x<0,0<-x<2时,f(-x)=-(-x)又f(x)的定义域为[-2,2],则f(x)19、(1)(2)【解析】(1)根据对数运算公式计算即可;(2)根据指数运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度生物科技研究与发展合同2篇
- 二零二四年度体育赛事洒水车租赁合同3篇
- 二零二四年度航空器材制造与技术转让合同2篇
- 2024年度沙漠资源开发利用沙土购销合同3篇
- 2024年度演艺活动委托合同3篇
- 二零二四年度商品买卖合同2篇
- 基于二零二四年度机器学习的金融风险评估系统开发合同3篇
- 商场2024年度冷藏设备维护合同3篇
- 二手写字间买卖合同2024年度范本3篇
- 2024年度网络安全服务合同:企业信息系统保护5篇
- 医学心理学(广东药科大学)智慧树知到答案章节测试2023年
- 公墓墓碑及道路维修工程施工方案施工组织设计
- 河道整治工程毕业设计
- 第三部分34课财报阅读方法与技巧之识别老千股
- SB/T 10482-2008预制肉类食品质量安全要求
- GB/T 40427-2021电力系统电压和无功电力技术导则
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- 2023年全国中学生英语能力竞赛(NEPCS)初赛初二组试题笔试部分完整版
- FZ/T 93015-2010转杯纺纱机
- 幼儿园突发事件应急处置流程图
- 国开《可编程控制器应用》形考任务五实验1
评论
0/150
提交评论