![2025届四川省遂宁市高中数学高二上期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view8/M00/1A/3F/wKhkGWcJYNWAXMD8AAGe6W8YmxA992.jpg)
![2025届四川省遂宁市高中数学高二上期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view8/M00/1A/3F/wKhkGWcJYNWAXMD8AAGe6W8YmxA9922.jpg)
![2025届四川省遂宁市高中数学高二上期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view8/M00/1A/3F/wKhkGWcJYNWAXMD8AAGe6W8YmxA9923.jpg)
![2025届四川省遂宁市高中数学高二上期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view8/M00/1A/3F/wKhkGWcJYNWAXMD8AAGe6W8YmxA9924.jpg)
![2025届四川省遂宁市高中数学高二上期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view8/M00/1A/3F/wKhkGWcJYNWAXMD8AAGe6W8YmxA9925.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省遂宁市高中数学高二上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或2.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若,则k的取值范围是()A. B.(-∞,]∪[0,+∞)C. D.3.若圆与直线相切,则()A.3 B.或3C. D.或4.若直线与双曲线相交,则的取值范围是A. B.C. D.5.已知关于的不等式的解集是,则的值是()A B.5C. D.76.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16C. D.7.已知向量,,则()A. B.C. D.8.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.9.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止的概率为()A. B.C. D.10.已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A. B.C. D.11.如果,,那么直线不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限12.如图,在四棱锥中,底面ABCD是平行四边形,已知,,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程为_______.14.已知圆,则圆心坐标为______.15.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________16.已知数列满足:,且,记,若,则___________.(用表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆的标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:18.(12分)为了解某城中村居民收入情况,小明利用周末时间对该地在岗居民月收入进行了抽样调查,并将调查数据整理得到如下频率分布直方图:根据直方图估算:(1)在该地随机调查一位在岗居民,该居民收入在区间内的概率;(2)该地区在岗居民月收入的平均数和中位数;19.(12分)设是首项为的等差数列的前项和,是首项为1的等比数列的前项和,为数列的前项和,为数列的前项和,已知.(1)若,求;(2)若,求.20.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.21.(12分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).22.(10分)求下列函数的导数.(1);(2).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒2、A【解析】圆心为,半径为2,圆心到直线的距离为,解不等式得k的取值范围考点:直线与圆相交的弦长问题3、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B4、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.5、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D6、C【解析】画出直观图,利用椎体体积公式进行求解.【详解】画出直观图,为四棱锥A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE两两垂直,故体积为.故选:C7、D【解析】按空间向量的坐标运算法则运算即可.【详解】.故选:D.8、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.9、A【解析】利用古典概型的概率公式求解.【详解】因为随机模拟产生了以下18组随机数:,其中恰好第三次就停止包含的基本事件有:023,123,132共3个,所以由此可以估计,恰好第三次就停止的概率为,故选:A10、A【解析】设出点,的坐标,并表示出两个斜率、,把代数式转化成与点的坐标相关的代数式,再与椭圆有公共点解决即可.【详解】椭圆中:,设则,则,,令,则它对应直线由整理得由判别式解得即,则的最小值为故选:A11、A【解析】将直线化为,结合已知条件即可判断不经过的象限.【详解】由题设,直线可写成,又,,∴,,故直线过二、三、四象限,不过第一象限.故选:A.12、A【解析】利用空间向量加法法则直接求解【详解】连接BD,如图,则故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为14、【解析】将圆的一般方程配方程标准方程即可.【详解】圆,即,它的圆心坐标是.故答案为:.15、①.②.【解析】根据题意得到,再利用叠加法求解即可.【详解】由题知:,,,所以,,,……,,所以,,……,,即,所以.故答案为:;16、【解析】由可得,结合已知条件,利用裂项相消求和法即可得答案.【详解】解:因为,所以,即,所以,因为,所以,又,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】(1)由可求出,结合离心率可知,进而可求出,即可求出标准方程.(2)由题意知,,则由直线的点斜式方程可得直线的解析式为,与椭圆进行联立,设,,结合韦达定理可得,从而由斜率的计算公式对进行整理化简从而可证明.【详解】(1)解:因为,所以.又因为离心率,所以,则,所以椭圆的标准方程是(2)证明:由题意知,,,则直线的解析式为,代入椭圆方程,得设,,则.又因为,,所以【点睛】关键点睛:本题第二问的关键是联立直线和椭圆的方程后,结合韦达定理,用表示交点横坐标的和与积,从而代入进行整理化简.18、(1)(2)平均数为;中位数为.【解析】(1)直接根据概率和为1计算得到答案.(2)根据平均数和中位数的定义直接计算得到答案.【小问1详解】该居民收入在区间内的概率为:【小问2详解】居民月收入的平均数为:.第一组概率为,第二组概率为,第三组概率为,设居民月收入的中位数为,则,解得.19、(1)或(2)【解析】(1)列方程组解得等差数列的公差,即可求得其前项和;(2)列方程组解得等差数列的公差和等比数列的公比,以错位相减法即可求得数列的前项和.【小问1详解】设的公差为,的公比为,则,,因为即,解之得或,又因为,得所以或,故,或【小问2详解】因为,所以,所以由解得(舍去)或,于是得,所以,因为,(1)所以,(2)所以由(1)(2)得:故20、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.21、(1)(2)证明见解析【解析】(1)点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宿舍楼房出租合同
- 商标转让合同样本
- 房地产交易经纪合同
- 股份质押合同
- 个人抵押借款合同
- 商品房装修工程合同范本
- STEAM理念下初中数学项目式学习的设计研究
- 面向小行星探测的着陆器附着钻进锚固力学特性研究
- 2025年安阳道路货运驾驶员从业资格证考试题库完整
- 高速光通信系统中信号识别方法研究
- 《教科版》二年级科学下册全册课件(完整版)
- (2024年)《处方管理办法》培训课件
- 人工智能在化工生产安全中的应用
- 2023年6月浙江高考政治试卷真题解读及答案解析(课件)
- 销售部廉政培训课件
- 三年级计算题三位数乘一位数练习300题带答案
- 商务服务业的市场细分和定位策略
- 财政学论文我国财政支出存在的问题及改革建议
- 2022年湖南高速铁路职业技术学院单招数学模拟试题及答案解析
- 小学生必备古诗
- 人教版英语八年级上册单词默写表
评论
0/150
提交评论