




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市红塔区普通高中2025届数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A、B是的ON边上的两个定点,C是OM边上的一个动点,当C在何处时,最大?问题的答案是:当且仅当的外接圆与边OM相切于点C时,最大.人们称这一命题为米勒定理.已知点P、Q的坐标分别是(2,0),(4,0),R是y轴正半轴上的一动点,当最大时,点R的纵坐标为()A.1 B.C. D.22.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成平局的概率()A.50% B.30%C.10% D.60%3.随着城市生活节奏的加快,网上订餐成为很多上班族的选择,下表是某外卖骑手某时间段订餐数量与送餐里程的统计数据表:订餐数/份122331送餐里程/里153045现已求得上表数据的回归方程中的值为1.5,则据此回归模型可以预测,订餐100份外卖骑手所行驶的路程约为()A.155里 B.145里C.147里 D.148里4.若抛物线的准线方程是,则抛物线的标准方程是()A. B.C. D.5.已知不等式解集为,下列结论正确的是()A. B.C. D.6.某软件研发公司对某软件进行升级,主要是对软件程序中的某序列重新编辑,编辑新序列为,它的第项为,若序列的所有项都是1,且,.记数列的前项和、前项积分别为,,若,则的最小值为()A.2 B.3C.4 D.57.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等8.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等9.已知函数的导函数满足,则()A. B.C.3 D.410.在区间内随机取一个数则该数满足的概率为()A. B.C. D.11.函数的部分图像为()A. B.C. D.12.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为___________.14.已知,,且,则的值是_________.15.在长方体中,M、N分别是BC、的中点,若,则______16.已知球面上的三点A,B,C满足,,,球心到平面ABC的距离为,则球的表面积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?18.(12分)如图,在多面体ABCDEF中,四边形ABCD是菱形,∠ABC=60°,FA⊥平面ABCD,ED//FA,且AB=FA=2ED=2(1)求证:平面FAC⊥平面EFC;(2)求多面体ABCDEF的体积19.(12分)求下列函数的导数(1);(2)20.(12分)已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m,交椭圆于A,B两个不同点.(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)求证直线MA,MB与x轴始终围成一个等腰三角形.21.(12分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.22.(10分)在平面直角坐标系中,已知点,,过点的动直线与过点的动直线的交点为P,,的斜率均存在且乘积为,设动点Р的轨迹为曲线C.(1)求曲线C的方程;(2)若点M在曲线C上,过点M且垂直于OM的直线交C于另一点N,点M关于原点O的对称点为Q.直线NQ交x轴于点T,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意,借助米勒定理,可设出坐标,表示出的外接圆方程,然后在求解点R的纵坐标.【详解】因为点P、Q的坐标分别是(2,0),(4,0)是x轴正半轴上的两个定点,点R是y轴正半轴上的一动点,根据米勒定理,当的外接圆与y轴相切时,最大,由垂径定理可知,弦的垂直平分线必经过的外接圆圆心,所以弦的中点为(3,0),故弦中点的横坐标即为的外接圆半径,即,由垂径定理可得,圆心坐标为,故的外接圆的方程为,所以点R的纵坐标为.故选:C.2、A【解析】根据甲获胜和甲、乙两人下成平局是互斥事件即可求解.【详解】甲不输有两种情况:甲获胜或甲、乙两人下成平局,甲获胜和甲、乙两人下成平局是互斥事件,所以甲、乙两人下成平局的概率为.故选:A.3、C【解析】由统计数据求样本中心,根据样本中心在回归直线上求得,即可得回归方程,进而估计时的y值即可.【详解】由题意:,,则,可得,故,当时,.故选:C4、D【解析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D5、C【解析】根据不等式解集为,得方程的解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.6、C【解析】先利用序列的所有项都是1,得到,整理后得到是等比数列,进而求出公比和首项,从而求出和,利用,列出不等式,求出,从而得到的最小值【详解】因为,,所以,又序列的所有项都是1,所以它的第项,所以,所以数列是等比数列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值为4.故选:C.7、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D8、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C9、C【解析】先对函数求导,再由,可求出的关系式,然后求【详解】由,得,因为,所以,所以,故选:C10、C【解析】求解不等式,利用几何概型的概率计算公式即可容易求得.【详解】求解不等式可得:,由几何概型的概率计算公式可得:在区间内随机取一个数则该数满足的概率为.故选:.11、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D12、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令则,∴在R上是减函数又等价于∴故不等式的解集是答案:点睛:本题考查用构造函数的方法解不等式,即通过构造合适的函数,利用函数的单调性求得不等式的解集,解题时要注意常见的函数类型,如在本题中由于涉及到,故可从以下两种情况入手解决:(1)对于,可构造函数;(2)对于,可构造函数14、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:315、-2【解析】作出图像,根据几何关系,结合空间向量的加减法运算法则即可求解.【详解】,∴,,,故答案为:-2.16、【解析】由题意可知为直角三角形,求出外接圆的半径,可求出球的半径,然后求球的表面积.【详解】由题意,,,,则,可知,所以外接圆的半径为,因为球心到平面的距离为,所以球的半径为:,所以球的表面积为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】(1)直接利用频率和频数公式求解;(2)利用频率分布直方图的公式求众数、中位数、平均数.【详解】(1)频率=(89.5-79.5)×0.025=0.25;频数=60×0.25=15.(2)[69.5,79.5)一组的频率最大,人数最多,则众数为74.5,左边三个矩形的面积和为0.4,左边四个矩形的面积和为0.7,所以中位数在第4个矩形中,设中位数为,所以中位数为72.8.平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.518、(1)证明见解析;(2).【解析】(1)连接BD交AC于点O,设FC的中点为P,连接OP,EP,证明BD//EP,BD⊥平面FAC即可推理作答.(2)求出三棱锥和四棱锥的体积即可计算作答.【小问1详解】连接BD交AC于点O,设FC的中点为P,连接OP,EP,如图,菱形ABCD中,O为AC的中点,则OP//FA,且,而ED//FA,且FA=2ED,于是得OP//ED,且OP=ED,即有四边形OPED为平行四边形,则OD//EP,即BD//EP,因为FA⊥平面ABCD,BD平面ABCD,则FA⊥BD,又四边形ABCD是菱形,即BD⊥AC,而FAAC=A,平面FAC,因此,BD⊥平面FAC,即EP⊥平面FAC,又EP平面EFC,所以平面FAC⊥平面EFC.【小问2详解】由已知,是正三角形,,则,取AD的中点G,连接CG,而△ACD为正三角形,从而有CG⊥AD,且,因FA⊥平面ABCD,FA平面ADEF,则平面ADEF⊥平面ABCD,又平面ADEF平面ABCD=AD,而CG平面ABCD,因此,CG⊥平面ADEF,则点C到平面ADEF的距离为,又,于是得,所以多面体ABCDEF的体积.19、(1)见解析(2)见解析【解析】(1)导数四则运算中的乘除法则.(2)求导数,主要考查复合函数,外导乘内导.【小问1详解】【小问2详解】.20、(Ⅰ);(Ⅱ)且;(Ⅲ)证明见解析.【解析】(Ⅰ)设出椭圆方程,根据题意得出关于的方程组,从而求得椭圆的方程;(Ⅱ)根据题意设出直线方程,并与椭圆方程联立消元,根据直线与椭圆方程有两个不同交点,利用即可求出m取值范围;(Ⅲ)设直线MA,MB的斜率分别为k1,k2,根据题意把所证问题转化为证明k1+k2=0即可.【详解】(1)设椭圆方程为,由题意可得,解得,∴椭圆方程为;(Ⅱ)∵直线l平行于OM,且在y轴上的截距为m,,所以设直线的方程为,由消元,得∵直线l与椭圆交于A,B两个不同点,所以,解得,所以m的取值范围为.(Ⅲ)设直线MA,MB的斜率分别为k1,k2,只需证明k1+k2=0即可,设,由(Ⅱ)可知,则,由,而,,故直线MA,MB与x轴始终围成一个等腰三角形.21、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程为.(2)由题意知切线的斜率一定存在,否则不能形成,设切线的方程为,联立,整理得,因为直线与椭圆相切,所以,化简得,则,因为点到直线的距离,所以,即,故的面积为,因为,可得,即,函数在上单调递增,所以,当时取等号,则,即面积的最大值为.当时,此时,所以直线的方程为.【点睛】对于直线与椭圆的位置关系的处理方法:1、判定与应用直线与椭圆的位置关系,一把转化为研究直线方程与椭圆组成的方程组的解得个数,结合判别式求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨越障碍的2025年税法考试试题及答案
- 2025钢筋混凝土结构仓库承包合同范本
- 理论结合实践的财务试题及答案
- 2025年计算机基础知识考前集训试题及答案
- 逻辑思维与财务计划制定的联系试题及答案
- 外部环境对财务成本管理的影响及试题答案
- 财务成本管理知识更新的必要性与试题及答案
- 了解2025年计算机二级Delphi考点试题及答案
- Msoffice考试实践活动试题及答案
- 计算机二级MySQL实践操作试题及答案
- 西格列汀二甲双胍缓释片-药品解读
- 多因素身份认证
- 小学二年级下学期数学家长会课件
- (完整版)小学生心理健康教育课件
- 铁路基本建设工程设计概(预)算编制办法-国铁科法(2017)30号
- 汽车修理厂台账表格范本
- 400字作文稿纸20x20格A4标准稿纸
- 管道燃气客服员(高级工)技能鉴定考试题库大全(含答案)
- 伤口敷料种类及作用-课件
- 《分式方程复习课》教学设计
- 二年级道德与法治下册 (做个“开心果”)教学课件
评论
0/150
提交评论