2025届江苏百校联考高一数学第一学期期末监测试题含解析_第1页
2025届江苏百校联考高一数学第一学期期末监测试题含解析_第2页
2025届江苏百校联考高一数学第一学期期末监测试题含解析_第3页
2025届江苏百校联考高一数学第一学期期末监测试题含解析_第4页
2025届江苏百校联考高一数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏百校联考高一数学第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则一定有()A. B.C. D.以上答案都不对2.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个3.函数与g(x)=-x+a的图象大致是A. B.C. D.4.已知,则()A. B.C. D.5.已知集合,,若,则的子集个数为A.14 B.15C.16 D.326.已知两条绳子提起一个物体处于平衡状态.若这两条绳子互相垂直,其中一条绳子的拉力为50,且与两绳拉力的合力的夹角为30°,则另一条绳子的拉力为()A.100 B.C.50 D.7.已知在上的减函数,则实数的取值范围是()A. B.C. D.8.终边在y轴上的角的集合不能表示成A. B.C. D.9.函数的定义域是()A. B.C D.10.过点且平行于直线的直线方程为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,为偶函数,则______12.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).13.若命题,,则的否定为___________.14.已知函数的两个零点分别为,则___________.15.函数,则__________.16.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,其倾斜角为.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积.18.已知函数,(1)求函数最小正周期以及函数在区间上的最大值和最小值;(2)将函数图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,若,求实数的取值范围19.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.20.已知函数(为常数且)的图象经过点,(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.21.设为定义在R上的偶函数,当时,;当时,,直线与抛物线的一个交点为,如图所示.(1)补全的图像,写出的递增区间(不需要证明);(2)根据图象写出不等式的解集

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于ABC,举例判断,【详解】对于AB,若,则,所以AB错误,对于C,若,则,所以C错误,故选:D2、B【解析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【点睛】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题3、A【解析】因为直线是递减,所以可以排除选项,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.4、A【解析】利用诱导公式及正弦函数的单调性可判断的大小,利用正切函数的单调性可判断的范围,从而可得正确的选项.【详解】,,因为,故,而,因为,故,故,综上,,故选:A5、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C6、D【解析】利用向量的平行四边形法则求解即可【详解】如图,两条绳子提起一个物体处于平衡状态,不妨设,根据向量的平行四边形法则,故选:D7、B【解析】令,,()若,则函数,减函数,由题设知为增函数,需,故此时无解()若,则函数是增函数,则为减函数,需且,可解得综上可得实数的取值范围是故选点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.8、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.9、B【解析】解不等式组即可得定义域.【详解】由得:所以函数的定义域是.故选:B10、A【解析】解析:设与直线平行直线方程为,把点代入可得,所以所求直线的方程为,故选A二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【详解】由题意得:解得:故答案为:.【点睛】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.12、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:13、,【解析】利用特称命题的否定可得出结论.【详解】命题为特称命题,该命题的否定为“,”.故答案为:,.14、【解析】依题意方程有两个不相等实数根、,利用韦达定理计算可得;【详解】解:依题意令,即,所以方程有两个不相等实数根、,所以,,所以;故答案为:15、【解析】先求的值,再求的值.【详解】由题得,所以.故答案为【点睛】本题主要考查指数对数运算和分段函数求值,意在考查学生对这些知识的理解掌握水平,属于基础题.16、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由斜率,再利用点斜式即可求得直线方程;(2)由直线的方程,分别令为,得到纵截距与横截距,即可得到直线与两坐标轴所围成的三角形的面积.【详解】(1)直线方程为:,即.(2)由(1)令,则;令,则.所以直线与两坐标轴所围成的三角形的面积为:.【点睛】本题考查直线的点斜式方程,直线截距的意义,三角形的面积,属于基础题.18、(1);最大值为,最小值;(2).【解析】(1)由题可得,再利用正弦函数的性质即求;(2)由题可得,利用正弦函数的性质可知在上单调递增,进而可得,即得.【小问1详解】∵,,∴,∴函数的最小正周期为,当时,,,∴,故函数在区间上的最大值为,最小值;【小问2详解】由题可得,由,可得,故在上单调递增,又,,由可得,,解得,∴实数的取值范围为.19、(1);(2)【解析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化得,若方程有解只需实数的取值范围为函数的值域,而,又因为,当时函数取得最小值,当时函数取得最大值,故实数的取值范围是.(2)由,当时函数取得最大值,当时函数取得最小值,故对一切恒成立只需,解得,所以实数的取值范围是.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.20、(1);(2).【解析】(1)利用函数图像上的两个点的坐标列方程组,解方程组求得的值.(2)将原不等式分离常数,利用函数的单调性,求出的取值范围.【详解】(1)由于函数图像经过,,所以,解得,所以.(2)原不等式为,即在时恒成立,而在时单调递减,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论