2025届宁夏银川市兴庆区银川一中数学高二上期末复习检测试题含解析_第1页
2025届宁夏银川市兴庆区银川一中数学高二上期末复习检测试题含解析_第2页
2025届宁夏银川市兴庆区银川一中数学高二上期末复习检测试题含解析_第3页
2025届宁夏银川市兴庆区银川一中数学高二上期末复习检测试题含解析_第4页
2025届宁夏银川市兴庆区银川一中数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届宁夏银川市兴庆区银川一中数学高二上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线关于直线对称的直线方程为()A. B.C. D.2.方程表示的曲线经过的一点是()A. B.C. D.3.已知抛物线:的焦点为F,准线l上有两点A,B,若为等腰直角三角形且面积为8,则抛物线C的标准方程是()A. B.C.或 D.4.命题,,则是()A., B.,C., D.,5.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.6.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.7.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.8.“”是直线与直线平行的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.在各项均为正数的等比数列中,若,则()A.6 B.12C.56 D.7810.三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1C.2 D.11.我国古代数学名著《算法统宗》是明代数学家程大位(1533-1606年)所著.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”.其意思是:“一座7层塔共挂了381盏灯,且下一层灯数是上一层的2倍,则可得塔的最顶层共有灯几盏?”.若改为“求塔的最底层几盏灯?”,则最底层有()盏.A.192 B.128C.3 D.112.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.14.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.15.若分别是平面的法向量,且,,,则的值为________.16.圆与圆的位置关系为______(填相交,相切或相离).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.18.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的方程;(2)经过点的直线与椭圆交于不同的两点,,为坐标原点,若的面积为,求直线的方程.19.(12分)已知点F是抛物线和椭圆的公共焦点,是与的交点,.(1)求椭圆的方程;(2)直线与抛物线相切于点,与椭圆交于,,点关于轴的对称点为.求的最大值及相应的.20.(12分)在四棱锥中,底面是边长为2的菱形,平面,,是的中点.(1)若为线段的中点,证明:平面;(2)线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求的长,若不存在,请说明理由.21.(12分)某城镇为推进生态城镇建设,对城镇的生态环境、市容市貌等方面进行了全面治理,为了解城镇居民对治理情况的评价和建议,现随机抽取了200名居民进行问卷并评分(满分100分),将评分结果制成如下频率分布直方图,已知图中a,b,c成等比数列,且公比为2(1)求图中a,b,c的值,并估计评分的均值(各段分数用该段中点值作代表);(2)根据统计数据,在评分为“50~60”和“80~90”的居民中用分层抽样的方法抽取了6个居民.若从这6个居民中随机选择2个参加座谈,求所抽取的2个居民中至少有1个评分在“80~90”的概率22.(10分)已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)过点的直线与圆交于两点在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C2、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C3、C【解析】分或()两种情况讨论,由面积列方程即可求解【详解】由题意得,当时,,解得;当或时,,解得,所以抛物线的方程是或.故选:C.4、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D5、C【解析】利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:C.6、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.7、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来8、C【解析】先根据直线平行的充要条件求出a,然后可得.【详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C9、D【解析】由等比数列的性质直接求得.【详解】在等比数列中,由等比数列的性质可得:由,解得:;由可得:,所以.故选:D10、C【解析】由题设写出双曲线的方程,对比系数,求出即可获解【详解】由题知所以双曲线的方程为又由题设的方程为,所以,即设AB的中点为,则由.所以,即圆的半径为2故选:C11、A【解析】根据题意,转化为等比数列,利用通项公式和求和公式进行求解.【详解】设这个塔顶层有盏灯,则问题等价于一个首项为,公比为2的等比数列的前7项和为381,所以,解得,所以这个塔的最底层有盏灯.故选:A.12、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.14、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.15、-1或-2【解析】由题可得,即求.【详解】依题意,,解得或.故答案为:或.16、相交【解析】求两圆圆心距,并与半径之和、半径之差的绝对值比较即可.【详解】圆的圆心为,半径为,圆的圆心为,半径为,∵,∴两圆相交.故答案为:相交.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.18、(1);(2)或.【解析】(1)由离心率公式、将点代入椭圆方程得出椭圆的方程;(2)联立椭圆和直线的方程,由判别式得出的范围,再由韦达定理结合三角形面积公式得出,求出的值得出直线的方程.【详解】解:(1)因为椭圆的离心率为,所以.①又因为椭圆经过点,所以有.②联立①②可得,,,所以椭圆的方程为.(2)由题意可知,直线的斜率存在,设直线的方程为.由消去整理得,.因为直线与椭圆交于不同两点,所以,即,所以设,,则,.由题意得,面积,即.因为的面积为,所以,即.化简得,,即,解得或,均满足,所以或.所以直线的方程为或.【点睛】关键点睛:在第二问中,关键是由韦达定理建立的关系,结合三角形面积公式求出斜率,得出直线的方程.19、(1);(2),.【解析】(1)根据题意可得,然后根据,,计算可得,最后可得结果.(2)假设直线的方程为,根据与抛物线相切,可得,然后与椭圆联立,计算,然后计算点到的距离,计算,利用函数性质可得结果.【详解】(1)由题意知:,.,得:,所以.所以的方程为.(2)设直线的方程为,则由,得得:所以直线的方程为.由,得得.又,所以点到的距离为..令,则,.此时,即【点睛】本题考查直线与圆锥曲线的综合以及三角形面积问题,本题着重考查对问题分析能力以及计算能力,属难题.20、(1)证明见解析;(2)存在点,且的长为,理由见解析.【解析】(1)取的中点为,连接,得到,结合面面平行的判定定理证得平面平面,进而得到平面;(2)以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,设,求得的法向量为和向量,结合向量的夹角公式列出方程,求得的值,即可求解.【小问1详解】证明:取的中点为,连接,因为分别为的中点,所以,又因为平面,且,所以平面平面,又由平面,所以平面.【小问2详解】解:以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,如图所示,因为底面是边长为2的菱形,设,在直角中,可得,在直角中,可得,在中,因为,所以,即,解得,设,可得,则,设平面的法向量为,则,令,可得,设直线与平面所成角为,所以,解得,即,所以存在点,且的长为.21、(1),,,均值为65.6(2)【解析】(1)根据a,b,c成等比数列且公比为2,得到a,b,c的关系,利用频率之和为1,求出a,b,c,估计评分的均值;(2)利用列举法得到基本事件,求出相应的概率.【小问1详解】由题意得,,,有,所以,即,解得,于是,评分在40~50,50~60,60~70,70~80,80~90,90~100的概率分别为0.15,0.20,0.30,0.20,0.10,0.05,则均分估计值为【小问2详解】评分在“50~60”和“80~90”分别有40人和20人则所抽取的6个居民中,评分在“80~90”一组有2人,记为A1,A2,评分在“50~60”一组4人,记为B1,B2,B3,B4从这6人中选取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论