黑龙江省齐市地区普高联谊校2025届高二数学第一学期期末学业水平测试模拟试题含解析_第1页
黑龙江省齐市地区普高联谊校2025届高二数学第一学期期末学业水平测试模拟试题含解析_第2页
黑龙江省齐市地区普高联谊校2025届高二数学第一学期期末学业水平测试模拟试题含解析_第3页
黑龙江省齐市地区普高联谊校2025届高二数学第一学期期末学业水平测试模拟试题含解析_第4页
黑龙江省齐市地区普高联谊校2025届高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省齐市地区普高联谊校2025届高二数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.2.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.33.已知是空间的一个基底,若,,若,则()A B.C.3 D.4.中国景德镇陶瓷世界闻名,其中青花瓷最受大家的喜爱,如图1这个精美的青花瓷花瓶,它的颈部(图2)外形上下对称,基本可看作是离心率为的双曲线的一部分绕其虚轴所在直线旋转所形成的曲面,若该颈部中最细处直径为16厘米,瓶口直径为20厘米,则颈部高为()A.10 B.20C.30 D.405.已知,,,,则下列不等关系正确的是()A. B.C. D.6.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-27.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种 B.48种C.72种 D.96种8.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.119.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.10.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.11.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.12.已知梯形中,,且,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线方程为,则其焦点坐标为__________14.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______15.已知直线与双曲线无公共点,则双曲线离心率的取值范围是____16.曲线在处的切线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值18.(12分)如图,在长方体中,,点E在棱上运动(1)证明:;(2)当E为棱的中点时,求直线与平面所成角的正弦值;(3)等于何值时,二面角的大小为?19.(12分)如图,直三棱柱中,底面是边长为2的等边三角形,D为棱AC中点.(1)证明:AB1//平面;(2)若面B1BC1与面BC1D的夹角余弦值为,求.20.(12分)已知抛物线的焦点为,点在抛物线上,且的面积为(为坐标原点)(1)求抛物线的标准方程;(2)点、是抛物线上异于原点的两点,直线、的斜率分别为、,若,求证:直线恒过定点21.(12分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和22.(10分)如图所示,在空间四边形中,,分别为,的中点,,分别在,上,且.求证:(1)、、、四点共面;(2)与的交点在直线上

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.2、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C3、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因为,所以存在实数,使,所以,所以,所以,得,,所以,故选:C4、B【解析】设双曲线方程为,根据已知条件可得的值,由可得双曲线的方程,再将代入方程可得的值,即可求解.【详解】因为双曲线焦点在轴上,设双曲线方程为由双曲线的性质可知:该颈部中最细处直径为实轴长,所以,可得,因为离心率为,即,可得,所以,所以双曲线的方程为:,因瓶口直径为20厘米,根据对称性可知颈部最右点横坐标为,将代入双曲线可得,解得:,所以颈部高为,故选:B5、C【解析】不等式性质相关的题型,可以通过举反例的方式判断正误.【详解】若、均为负数,因为,则,故A错.若、,则,故B错.由不等式的性质可知,因为,所以,故C对.若,因为,所以,故D错.故选:C.6、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.7、B【解析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.8、B【解析】由题意可得的边长,进而可得周长及,进而可得,可得解.【详解】由,可得,,,,所以,,所以前项和,所以,故选:B.9、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D10、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B11、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题12、D【解析】根据共线定理、平面向量的加法和减法法则,即可求得,进而求出的值,即可求出结果.【详解】因为,所以又,所以.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.14、【解析】利用待定系数法列出关于的方程解出即可得结果.【详解】设的标准方程为,则解得所以的标准方程为故答案为:.15、【解析】联立直线得,由无公共点得,进而得,即可求出离心率的取值范围.【详解】联立直线与双曲线可得,整理得,显然,由方程无解可得,即,则,,又离心率大于1,故离心率的取值范围是.故答案为:.16、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.【小问1详解】由题意可得,圆心为(2,0),半径为2.则圆的方程为;【小问2详解】由(1)可知:圆C半径为,设圆心(2,0)到l的距离为d,则,由垂径定理得:18、(1)证明见解析;(2);(3).【解析】(1)连接、,长方体、线面垂直的性质有、,再根据线面垂直的判定、性质即可证结论.(2)连接,由已知条件及勾股定理可得、,即可求、,等体积法求到面的距离,又直线与面所成角即为与面所成角,即可求线面角的正弦值.(3)由题设易知二面角为,过作于,连接,可得二面角平面角为,令,由长方体的性质及勾股定理构造方程求即可.【小问1详解】由题设,连接、,又长方体中,∴为正方形,即,又面,面,即,∵,面,∴面,而面,即.【小问2详解】连接,由E为棱的中点,则,∴,又,故,∴,又,,故,则,由,若到面的距离为,又,,∴,可得,又,∴直线与面所成角即为与面所成角为,故.【小问3详解】二面角大小为,即二面角为,由长方体性质知:面,面,则,过作于,连接,又,∴面,则二面角平面角为,∴,令,则,故,而,,∴,∴,整理得,解得.∴时,二面角的大小为.19、(1)证明见解析(2)【解析】(1)连接,使,连接,即可得到,从而得证;(2)设,以为坐标原点建立空间直角坐标系,求出平面的法向量,平面的法向量,利用空间向量的数量积求解面与面的夹角余弦值为,从而得到方程,解得即可【小问1详解】证明:如图,连,使,连,由直三棱柱,所以四边形为矩形,所以为中点,在中,、分别为和中点,,又因平面平面,面,面,平面【小问2详解】解:设,以为坐标原点如图建系,则,,所以、,设平面的法向量则,故可取设平面的法向量,则,故可取,因为面与面的夹角余弦值为,所以,即,解得,20、(1);(2)证明见解析.【解析】(1)由点在抛物线上可得出,再利用三角形的面积公式可得出关于的等式,解出正数的值,即可得出抛物线的标准方程;(2)设点、,利用斜率公式结合已知条件可得出的值,分析可知直线不与轴垂直,可设直线的方程为,将该直线方程与抛物线的方程联立,利用韦达定理求出的值,即可得出结论.【小问1详解】解:抛物线的焦点为,由已知可得,则,,,解得,因此,抛物线的方程为.【小问2详解】证明:设点、,则,可得.若直线轴,则该直线与抛物线只有一个交点,不合乎题意.设直线的方程为,联立,可得,由韦达定理可得,可得,此时,合乎题意.所以,直线的方程为,故直线恒过定点.21、(1)证明见解析;(2).【解析】(1)求得,利用等差数列的定义可证得结论成立;(2)求出,可计算得出,利用并项求和法可求得数列的前项的和.小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论