四川省成都市新津中学2025届数学高二上期末学业水平测试模拟试题含解析_第1页
四川省成都市新津中学2025届数学高二上期末学业水平测试模拟试题含解析_第2页
四川省成都市新津中学2025届数学高二上期末学业水平测试模拟试题含解析_第3页
四川省成都市新津中学2025届数学高二上期末学业水平测试模拟试题含解析_第4页
四川省成都市新津中学2025届数学高二上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市新津中学2025届数学高二上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知奇函数,则的解集为()A. B.C. D.2.直线的倾斜角是()A. B.C. D.3.如图,在三棱锥S—ABC中,点E,F分别是SA,BC的中点,点G在棱EF上,且满足,若,,,则()A. B.C. D.4.过点作圆的切线,则切线的方程为()A. B.C.或 D.或5.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项6.人教A版选择性必修二教材的封面图案是斐波那契螺旋线,它被誉为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵、鹦鹉螺等.斐波那契螺旋线的画法是:以斐波那契数1,1,2,3,5,8,…为边长的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.下图为该螺旋线在正方形边长为1,1,2,3,5,8的部分,如图建立平面直角坐标系(规定小方格的边长为1),则接下来的一段圆弧所在圆的方程为()A. B.C. D.7.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成平局的概率()A.50% B.30%C.10% D.60%8.已知椭圆:与双曲线:有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则的最大值为()A. B.C. D.9.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A. B.C. D.11.抛物线的焦点为F,A,B是拋物线上两点,若,若AB的中点到准线的距离为3,则AF的中点到准线的距离为()A.1 B.2C.3 D.412.在等差数列中,,则的公差为()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程为_____14.已知、分别为双曲线的左、右焦点,为双曲线右支上一点,满足,直线与圆有公共点,则双曲线的离心率的取值范围是___________.15.已知函数,则函数在区间上的平均变化率为___________.16.已知函数有两个极值点,则实数a的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线和直线(1)若时,求a的值;(2)当平行,求两直线,的距离18.(12分)已知圆C的方程为.(1)直线l1过点P(3,1),倾斜角为45°,且与圆C交于A,B两点,求AB的长;(2)求过点P(3,1)且与圆C相切的直线l2的方程.19.(12分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值20.(12分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.21.(12分)设为数列的前n项和,且满足(1)求证:数列为等差数列;(2)若,且成等比数列,求数列的前项和22.(10分)已知数列{an}满足,(1)记,证明:数列{bn}为等比数列,并求数列{bn}的通项公式;(2)记数列{bn}前n项和为Tn,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.2、A【解析】将直线方程化为斜截式,由此确定斜率;根据斜率和倾斜角关系可得结果.【详解】设直线的倾斜角为,则,由得:,则斜率,.故选:A.3、D【解析】利用空间向量的加、减运算即可求解.详解】由题意可得故选:D4、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C5、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C6、C【解析】由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由于每一个圆弧为四分之一圆,从而可求出下一段圆弧所以圆的圆心,进而可得其方程【详解】解:由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由题意可知下一段圆弧过点,因为每一段圆弧的圆心角都为90°,所以下一段圆弧所在圆的圆心与点的连线平行于轴,因为下一段圆弧半径为13,所以所求圆的圆心为,所以所求圆的方程为,故选:C7、A【解析】根据甲获胜和甲、乙两人下成平局是互斥事件即可求解.【详解】甲不输有两种情况:甲获胜或甲、乙两人下成平局,甲获胜和甲、乙两人下成平局是互斥事件,所以甲、乙两人下成平局的概率为.故选:A.8、B【解析】不妨设点为第一象限的交点,结合椭圆与双曲线的定义得到,进而结合余弦定理得到,即,令然后结合三角函数即可求出结果.【详解】不妨设点为第一象限的交点,则由椭圆的定义可得,由双曲线的定义可得,所以,因此,即,所以,即,令因此,其中,所以当时,有最大值,最大值为,故选:B.【点睛】一、椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)9、C【解析】利用等差数列的定义和数列单调性的定义判断可得出结论.【详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.10、D【解析】依题意以双曲线的对称中心为坐标原点建系,设双曲线的方程为,根据已知求得,点纵坐标代入计算即可求得横坐标得出结果.【详解】以双曲线的对称中心为坐标原点,建立平面直角坐标系,因为双曲线的离心率为2,所以可设双曲线的方程为,依题意可得,则,即双曲线的方程为.因为,所以的纵坐标为18.由,得,故.故选:D.11、C【解析】结合抛物线的定义求得,由此求得线段的中点到准线的距离【详解】抛物线方程为,则,由于中点到准线的距离为3,结合抛物线的定义可知,即,所以线段的中点到准线的距离为.故选:C12、A【解析】根据等差数列性质可得方程组,求得公差.【详解】等差数列中,,,由通项公式可得解得故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】本题利用抛物线的标准方程得出抛物线的准线方程【详解】由抛物线方程可知,抛物线的准线方程为:故答案为【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题14、【解析】过点作于,过点作于,利用双曲线的定义以及勾股定理可求得,由已知可得,可得出关于、的齐次不等式,结合可求得的取值范围.【详解】过点作于,过点作于,因为,所以,又因为,所以,故,又因为,且,所以,因此,所以,又因为直线与圆有公共点,所以,故,即,则,所以,又因为双曲线的离心率,所以.故答案为:.15、3【解析】根据平均变化率的定义即可计算.【详解】设,因,,所以.故答案为:316、【解析】由题可得有两个不同正根,利用分离参数法得到.令,,只需和有两个交点,利用导数研究的单调性与极值,数形结合即得.【详解】∵的定义域为,,要使函数有两个极值点,只需有两个不同正根,并且在的两侧的单调性相反,在的两侧的单调性相反,由得,,令,,要使函数有两个极值点,只需和有两个交点,∵,令得:0<x<1;令得:x>1;所以在上单调递增,在上单调递减,当时,;当时,;作出和的图像如图,所以,即,即实数a的取值范围为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由垂直可得两直线系数关系,即可得关于实数a的方程.(2)由平行可得两直线系数关系,即可得关于实数a的方程,进而可求出两直线的方程,结合直线的距离公式即可求出直线与之间的距离.【小问1详解】∵,且,∴,解得【小问2详解】∵,,且,∴且,解得,∴,即∴直线间的距离为18、(1)(2)x=3或【解析】(1)首先利用点斜式求出直线的方程,再利用点到直线的距离公式求出圆心到直线的距离,最后利用垂直定理、勾股定理计算可得;(2)依题意可得点在圆外,分直线的斜率存在与不存在两种情况讨论,当直线的斜率不存在直线得到直线方程,但直线的斜率存在时设直线方程为,利用点到直线的距离公式得到方程,解得,即可得解;【小问1详解】解:根据题意,直线的方程为,即,则圆心到直线的距离为故;【小问2详解】解:根据题意,点在圆外,分两种情况讨论:当直线的斜率不存在时,过点的直线方程是,此时与圆C:相切,满足题意;当直线的斜率存在时,设直线方程为,即,直线与圆相切时,圆心到直线的距离为解得此时,直线的方程为,所以满足条件的直线的方程是或.19、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点在负半轴可得的范围;(Ⅱ)求导数,由的正负确定单调性,极值得最值【详解】命题意图本题主要考查导数在函数问题中的应用解析(Ⅰ)由题可知,,故可得的图象在点处的切线方程为令,可得由题意可得,即,解得,即的取值范围为(Ⅱ)当时,,易知在上单调递增又,当时,,此时单调递减,当时,,此时单调递增,无最大值【点睛】关键点点睛:本题考查用导数的几何意义,考查用导数求函数的的最值.解题关键是求出导函数,由的正负确定单调性,得函数的极值,从而可得最值20、(1)(2)【解析】(1)将几何体的表面积分成上下两个扇形、两个矩形和一个圆柱形侧面的一部分组成,分别求出后相加即可;(2)先根据条件得到面,通过平移将异面直线转化为同一个平面内的直线夹角即可【小问1详解】上下两个扇形的面积之和为:两个矩形面积之和为:4侧面圆弧段的面积为:故这个几何体的表面积为:【小问2详解】如下图,将直线平移到下底面上为由,且,,可得:面则而G是弧DF的中点,则由于上下两个平面平行且全等,则直线与直线的夹角等于直线与直线的夹角,即为所求,则则直线与直线的夹角为21、(1)证明见解析;(2)答案见解析.【解析】(1)利用给定的递推公式,结合“当时,”变形,再利用等差中项的定义推理作答.(2)利用(1)的结论,利用等比中项的定义列式计算,再利用等差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论