版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省广饶一中2025届高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某四面体的三视图如图所示,该四面体的表面积为()A. B.C. D.2.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.1103.棱长为1的正四面体的表面积是()A. B.C. D.4.直线在y轴上的截距为()A.-1 B.1C. D.5.命题“,都有”的否定为()A.,使得 B.,使得C.,使得 D.,使得6.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺7.已知椭圆的右焦点为,为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B.C. D.8.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.9.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.404210.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.11.已知双曲线的左、右焦点分别为,点A在双曲线上,且轴,若则双曲线的离心率等于()A. B.C.2 D.312.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,且,则___________.14.与双曲线有共同的渐近线,并且经过点的双曲线方程是______15.已知向量,向量,若,则实数的值为________.16.如图所示,直线是曲线在点处的切线,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围18.(12分)设,分别是椭圆()的左、右焦点,E的离心率为.短轴长为2.(1)求椭圆E的方程:(2)过点的直线l交椭圆E于A,B两点,是否存在实数t,使得恒成立?若存在,求出t的值;若不存在,说明理由.19.(12分)在复数集C内方程有六个根分别为(1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A,B,C,D,E,F;求多边形ABCDEF的面积20.(12分)某校高三年级进行了一次数学测试,全年级学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若(1)求a,b的值;(2)若成绩落在区间内的人数为36人,请估计该校高三学生的人数21.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.22.(10分)已知椭圆C:的长轴长为4,过C的一个焦点且与x轴垂直的直线被C截得的线段长为3(1)求C的方程;(2)若直线:与C交于A,B两点,线段AB的中垂线与C交于P,Q两点,且,求m的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为,故选:A.2、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:3、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D4、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为.故选:A5、A【解析】根据命题的否定的定义判断【详解】全称命题的否定是特称命题,命题“,都有”的否定为:,使得故选:A6、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A7、D【解析】设椭圆的左焦点为,由椭圆的对称性可知,则,所以,即可得到的关系,利用椭圆的定义进而求得离心率.【详解】设椭圆的左焦点为,连接,因为,所以,如图所示,所以,设,,则,所以,故选:D.8、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.9、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.10、D【解析】设,则,.所以当时,的最小值为.故选D.11、B【解析】由双曲线定义结合通径公式、化简得出,最后得出离心率.【详解】,,,解得故选:B12、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量共线的坐标表示可得出关于的等式,求出的值即可.【详解】由已知可得,解得.故答案为:.14、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.15、2【解析】根据,由求解.【详解】因为向量,向量,且,所以,解得,故答案为:216、##【解析】利用直线所过点求得直线的斜率,从而求得.【详解】由图象可知直线过,所以直线的斜率为,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先解出集合A、B,然后根据p是q的充分不必要条件列出不等式组求解.(2)¬q是¬p的必要不充分条件可知q是p的充分不必要条件,然后求解.【小问1详解】解:由题意得:,p是q的充分不必要条件,所以集合A是集合B的真子集∴,即,所以实数a的取值范围.【小问2详解】¬q是¬p的必要不充分条件p是q的必要不充分条件,即q是p的充分不必要条件集合B是集合A的真子集∴,故实数a的取值范围为18、(1)(2)存在,【解析】(1)由条件列出,,的方程,解方程求出,,,由此可得椭圆E的方程:(2)当直线的斜率存在时,设直线的方程为,联立直线的方程与椭圆方程化简可得,设,,可得,,由此证明,再证明当直线的斜率不存在时也成立,由此确定存在实数t,使得恒成立【小问1详解】由已知得,离心率,所以,故椭圆E的方程为.【小问2详解】当直线l的斜率存在时,设,,,联立方程组得,,所以,..,,所以.所以.当直线l的斜率不存在时,,联立方程组,得,.,,所以.综上,存在实数使得恒成立.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.19、(1)(2)【解析】(1)原式可因式分解为,令,设可求解出的两个虚根,同理可求解的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可【小问1详解】由题意,当时,设故,所以解得:,即当时,设故所以解得:,即故:【小问2详解】六个根对应的点分别为A,B,C,D,E,F,其中在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1故20、(1)(2)人【解析】(1)由频率分布直方图的性质求得,结合,即可求得的值;(2)由频率分布直方图求得落在区间内的概率,进而求得该校高三年级的人数【小问1详解】解:由频率分布直方图的性质,可得:,可得,又由,可得解得;【小问2详解】解:由频率分布直方图可得,成绩落在区间内的概率为,则该校高三年级的人数为(人)21、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.22、(1);(2).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷含答案(达标题)
- 国画基础学教案
- 暑假的学习计划(16篇)
- 湖北省襄阳市2023-2024学年高一上学期期末考试化学试题(含答案)
- 评估服务委托合同
- 诚信承诺声明
- 详细保证书模板保证心得
- 语文大专辩论赛评分卷
- 财务收款确认书
- 质量守则系统保证书
- 气胸、血胸病人的护理课件
- 培养青年教师方案
- 2024时事政治必考试题库(含答案)
- 在线网课知慧《税收筹划(安徽财大)》单元测试考核答案
- 安徽省医疗保障基金使用违法违规问题检查指引2023版
- 手术室外麻醉的风险
- 综合医院中精神障碍的识别
- ZYJ7道岔故障处理
- 国家开放大学《中文学科论文写作》形考任务1-4参考答案
- 东北三省联考(辽宁名校联盟)2024届高三12月联合考试语文试题及参考答案
- 100以内加减法练习题(3000道)
评论
0/150
提交评论