版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆乌鲁木齐市四中数学高一上期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.62.若和都是定义在上的奇函数,则()A.0 B.1C.2 D.33.若,则()A. B.C.或1 D.或4.若函数是幂函数,且其图象过点,则函数的单调增区间为A. B.C. D.5.“是钝角”是“是第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c7..已知集合,集合,则()A. B.C. D.8.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.9.若集合,则()A. B.C. D.10.下列函数中为奇函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.12.正三棱锥中,,则二面角的大小为__________13.若“”为假命题,则实数m最小值为___________.14.已知是定义在上的偶函数,且当时,,则当时,___________.15.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为__________.(答案用,表示)16.函数,在区间上增数,则实数t的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=lnx+2x,若f(x2-4)<2,求实数x的取值范围.18.已知函数(1)试判断函数的奇偶性;(2)求函数的值域.19.如图,已知三棱锥中,,,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面;(3)若,,求三棱锥的体积.20.已知直线(1)求证:直线过定点(2)求过(1)的定点且垂直于直线直线方程.21.设,为两个不共线的向量,若.(1)若与共线,求实数的值;(2)若为互相垂直的单位向量,且,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用2、A【解析】根据题意可知是周期为的周期函数,以及,,由此即可求出结果.【详解】因为和都是定义在上的奇函数,所以,,所以,所以,所以是周期为周期函数,所以因为是定义在上的奇函数,所以,又是定义在上的奇函数,所以,所以,即,所以.故选:A.3、A【解析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【详解】由,两边平方得,或1,,.故选:A.【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.4、B【解析】分别求出m,a的值,求出函数的单调区间即可【详解】解:由题意得:,解得:,故,将代入函数的解析式得:,解得:,故,令,解得:,故在递增,故选B【点睛】本题考查了幂函数的定义以及对数函数的性质,是一道基础题5、A【解析】根据钝角和第二象限角的定义,结合充分性、必要性的定义进行判断即可.【详解】因为是钝角,所以,因此是第二象限角,当是第二象限角时,例如是第二象限角,但是显然不成立,所以“是钝角”是“是第二象限角”的充分不必要条件,故选:A6、C【解析】利用指数函数与对数函数的单调性即可得出【详解】∵a=22.5>1,<0,,∴a>c>b,故选C【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题7、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.8、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.9、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。10、D【解析】利用奇函数的定义逐个分析判断【详解】对于A,定义域为,因为,所以是偶函数,所以A错误,对于B,定义域为,因为,且,所以是非奇非偶函数,所以B错误,对于C,定义域为,因为定义域不关于原点对称,所以是非奇非偶函数,所以C错误,对于D,定义域为,因为,所以是奇函数,所以D正确,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题12、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以13、【解析】写出该命题的否定命题,根据否定命题求出的取值范围即可【详解】解:命题“,有”是假命题,它否定命题是“,有”,是真命题,即,恒成立,所以,因为,在上单调递减,上单调递增,又,,所以所以,的最小值为,故答案为:14、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.15、【解析】由题意得的三边分别为则由可得,所以,三角数三边分别为,因为,所以三个半径为的扇形面积之和为,由几何体概型概率计算公式可知,故答案为.【方法点睛】本题题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.16、【解析】作出函数的图象,数形结合可得结果.【详解】解:函数的图像如图.由图像可知要使函数是区间上的增函数,则.故答案为【点睛】本题考查函数的单调性,考查函数的图象的应用,考查数形结合思想,属于简单题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或【解析】利用函数单调性解决抽象不等式.试题解析:因为函数f(x)=lnx+2x在定义域上单调递增,且f(1)=ln1+2=2,所以由f(x2-4)<2得,f(x2-4)<f(1),所以0<x2-4<1,解得-<x<-2或2<x<.18、(1)奇函数;(2).【解析】化简函数f(x)=log3(2-sinx)-log3(2+sinx)(1)利用函数的奇偶性的定义直接求解即可;(2)把分子分离常数,根据-1≤sinx≤1,求出函数的值域【详解】(1),的定义域为,则对中的任意都有,所以为上的奇函数;(2)令,,,
,,,
即值域为.【点睛】本题考查对数的运算性质,函数奇偶性的判断,对数函数的值域与最值,考查计算能力,属于中档题.19、(1)见详解;(2)见详解;(3).【解析】(1)先证,可证平面.(2)先证,得,结合可证得平面.(3)等积转换,由,可求得体积.【详解】(1)证明:因为为的中点,为的中点,所以是的中位线,.又,,所以.(2)证明:因为为正三角形,为的中点,所以.又,所以.又因为,,所以.因为,所以.又因为,,所以.(3)因为,,所以,即是三棱锥的高.因为,为的中点,为正三角形,所以.由,可得,在直角三角形中,由,可得.于是.所以.【点睛】本题考查空间线面平行与垂直的证明,体积的计算.空间中的平行与垂直的证明过程就是利用相关定义、判定定理和性质定理实现线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转换.求三棱锥的体积常采用等积转换的方法,选择易求的底面积和高来求体积.20、(1)见解析;(2).【解析】⑴将直线化为,解不等式组即可得证;⑵由(1)知定点为,结合题目条件计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年住宅小区园林景观工程承揽协议版B版
- 暨南大学《和声学》2023-2024学年第一学期期末试卷
- 济宁学院《武术Ⅰ》2021-2022学年第一学期期末试卷
- 全新版权许可使用合同2024年度4篇
- 安全生产常识 第3版 课件 第五章 职业安全技术
- 2024年度防洪应急预案施工合同2篇
- 2024年上半年综治工作总结
- 前台收银员2024年终工作总结
- 2024年师范生个人顶岗实习总结
- 社会保险医疗保险
- 退教协工作总结范文(通用6篇)
- 《邹忌讽齐王纳谏》课件(共45张)
- 车间泡罩岗位标准操作规程
- 电焊作业教育训练
- 竣工验收签到表
- 跑团年会龙腾运动同乐跑团年会
- 卫生部关于发布《综合医院组织编制原则试行草案》的通知((78)卫医字第1689号)
- 网球运动损伤与防护课件
- 磁现象与磁场课件-高二上学期物理粤教版(2019)必修第三册
- 工程机械售后服务管理细则
- 检察院分级保护项目技术方案
评论
0/150
提交评论