版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04一元一次方程、二元一次方程(组)、分式方程及其应用目录热点题型归纳 1题型01一元一次方程的解法 1题型02二元一次方程(组)的解法 3题型03一次方程(组)的实际应用 6题型04分式方程及其解法 10题型05分式方程的实际应用 13中考练场 15 题型01一元一次方程的解法【解题策略】一元一次方程概念:只含有一个未知数,并且未知数的次数是一次的整式方程,叫做一元一次方程。其一般形式是ax+b=0(a,b为常数,且a≠0).解法:解法依据是等式的基本性质.性质①:若a=b,则a±m=b±m;性质②:若a=b,则am=bm;若a=b,则(d≠0).解一元一次方程的步骤去分母:在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)去括号:去括号法则(可先分配再去括号)移项:把未知项移到议程的一边(左边),常数项移到另一边(右边)合并同类项:分别将未知项的系数相加、常数项相加系数化为“1”:在方程两边同时除以未知数的系数(即方程两边同时乘以未知数系数的倒数)6、检根x=a:方法:把x=a分别代入原方程的两边,分别计算出结果。①若左边=右边,则x=a是方程的解;②若左边≠右边,则x=a不是方程的解。注:当题目要求时,此步骤必须表达出来。在解方程过程中,各部分都存在容易出错的一些“小陷阱”,现将各步骤的注意事项总结如下:【易错警示】在解方程过程中,各部分都存在容易出错的一些“小陷阱”,现将各步骤的注意事项总结如下:去分母①不含分母的项也要乘以最小公倍数;②分子是多项式的一定要先用括号括起来去括号括号外是负因数时,一是要注意变号,二是要注意各项都不要漏乘公因数移项移项要变号合并同类项单独的一个未知数的系数为“±1”系数化为1不要颠倒了被除数和除数(未知数的系数作除数——分母)【典例分析】例1.(2023·湖南)关于x的一元一次方程2x+m=5的解为x=1,则m的值为(
)A.3 B.−3 C.7 D.−7例2.(2023·浙江)小红在解方程7x3=解:2×7x=(4x−1)+1,
…(1)请在相应的方框内用横线划出小红的错误处.
(2)写出你的解答过程.【变式演练】1.(2024·广西模拟)关于x的一元一次方程2x+m=5的解为x=1,则m的值为
(
)A.3 B.−3 C.7 D.−72.(2024·河北模拟)米老鼠在解方程2x−13=x+a2−1的过程中,去分母时方程右边的−1忘记乘6,因而求得的解为x=2.
(1)请你帮助米老鼠求出a的值;3.(2024·陕西模拟)解方程:8x+45=1+11x+1题型02二元一次方程(组)的解法【解题策略】二元一次方程的概念:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程【易错警示】二元一次方程的解必须是两个未知数同时确定的组合,用大括号括起来即可;1个二元一次方程的解不唯一,可能有无数个;二元一次方程中用一个未知数来表示另一个未知数,依据的是等式的基本性质;二元一次方程组的概念:由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组二元一次方程组解法:名称步骤具体操作代入消元法①将方程组中的一个方程变形,使得一个未知数能用含有另一个未知数的代数式表示;②用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;③把这个未知数的值代入代数式,求得另一个未知数的值;④写出方程组的解;加减消元法①将其中一个未知数的系数化为相同(或互为相反数)②通过相减(或相加)消去这个未知数,得到一个一元一次方程③解这个一元一次方程,得到一个未知数的值;④将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值;⑤写出方程组的解;【典例分析】例1.(2023·浙江)(二元一次方程的解)下列各组数满足方程2x+3y=8的是(
)A.x=1,y=2 B.x=2,y=1 C.x=−1,y=2例2.(2023·广东)(二元一次方程组的概念)下列方程组中,是二元一次方程组的是.(
)A.1x+2y=4x−5y=3 B.a+b=4例3.(2023·四川)(二元一次方程组的解)已知关于x,y的二元一次方程组3x−y=4m+1x+y=2m−5的解满足x−y=4,则m的值为(
)A.0 B.1 C.2 D.3例4.(2023·天津)(代入消元法)方程组y=2x3x+y=15的解是(
)A.x=2y=3 B.x=4y=3 C.x=4y=8例5.(2023·四川)(加减消元法)已知关于x、y的二元一次方程组3x−y=4m+1,x+y=2m−5的解满足x−y=4,则m的值为(
)A.0 B.1 C.2 D.3【变式演练】1.(2023·广东)若二元一次方程3x−y=7,2x+3y=1,y=kx−9有公共解,则k的取值为(
)A.3 B.−3 C.−4 D.42.(2023·四川)关于x,y的方程组3x+y=2m−1,x−y=n的解满足x+y=1,则4m÷2A.1 B.2 C.4 D.83.(2023·广东)用加减法消元解方程组x+3y=8①x−y=1②的过程中,正确的是(
)A.①+②,得4y=9 B.①+②,得2y=9
C.①−②,得4y=7 D.①−②,得2y=7题型03一次方程(组)的实际应用【解题策略】1、列方程解应用题的一般步骤:步骤“点睛”“审”(即审题)“审”题目中的已知量、未知量、基本关系;“设”(即设未知数)一般原则是:问什么就设什么;或未知量较多时,设较小的量,表示较大的量“列”【即列方程(组)】找准题目中的等量关系,根据等量关系列出方程“解”【即解方程(组)】根据一次方程(组)的解法解出方程,注意解方程的过程不需要在解答中体现“验”(即检验)非题目要求,此步可以不写检验分两步,一是检验方程是否解正确;二是检验方程的解是否符合题意“答”(即写出答案)最后的综上所述2、常见类型及关系式:常见运用题型解应用题的步骤:①审清题意;②找等量关系;③设未知数;④列方程;⑤解方程;⑥验根;⑦作答.工作(或工程)问题:工作量=工作效率×工作时间利息问题:利息=本金×利率×期数;本息和=本金+利息行程问题:路程=速度×时间;其中,相遇问题:s甲+s乙=s总;追及问题:(同地异时)前者走的路程=追者走的路程;(异地同时)前者走的路程+两地间的距离=追者走的路程利润问题:利润=卖价-进价;利润率=×100%.数字问题:两位数=10×十位数字+个位数字;三位数=100×百位数字+10×十位数字+个位数字分配问题等【典例分析】例1.(2023·河北)某磁性飞镖游戏的靶盘如图所示.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:
投中位置A区B区脱靶一次计分(分)31−2在第一局中,珍珍投中A区4次,B区2次.脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.例2.(2023·辽宁)某礼品店经销A,B两种礼品盒,第一次购进A种礼品盒10盒,B种礼品盒15盒,共花费2800元;第二次购进A种礼品盒6盒,B种礼品盒5盒,共花费1200元.
(1)求购进A,B两种礼品盒的单价分别是多少元;
(2)若该礼品店准备再次购进两种礼品盒共40盒,总费用不超过4500元,那么至少购进A种礼品盒多少盒?例3(2023·江苏)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.
(1)求A、B两种商品的销售单价;
(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?例4.(2023·四川)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.
(1)求甲,乙两种书的单价分别为多少元;
(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?【变式演练】1.(2023·辽宁)为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则:
(1)男女跑步的总路程为______;
(2)当男、女相遇时,求此时男、女同学距离终点的距离.2.(2023·广东模拟)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4 000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这4000件物品,需筹集资金多少元?3.(2023·重庆)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.
(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?
(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?4.(2023·广东)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.
(1)求A,B玩具的单价;
(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于40000元,则该商场最多可以购置多少个A玩具?5.(2023·江苏)某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).
(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.
(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m本硬面笔记本(m为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.题型04分式方程及其解法【解题策略】一、分式方程1.分母里含有未知数的有理方程叫分式方程.2.使分式方程分母为零的未知数的值即为增根;分式方程的增根有两个特征:(1)增根使最简公分母为零;(2)增根是分式方程化成的整式方程的根.二、分式方程的基本解法解分式方程的一般步骤:(1)去分母,把分式方程转化为整式方程;(2)解这个整式方程,求得方程的根;(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为零,则它不是原方程的根,而是方程的增根,必须舍去;如果使最简公分母不为零,则它是原分式方程的根.☆:分式方程会无解的几种情况①解出的x的值是增根,须舍去,无解②解出的x的表达式中含参数,而表达式无意义,无解③同时满足①和②,无解☆:求有增根分式方程中参数字母的值的一般步骤:①让最简公分母为0确定增根;②去分母,将分式方程转化为整式方程;③将增根带入(当有多个增根时,注意分类,不要漏解);④解含参数字母的方程的解。【典例分析】例1.(2023·山东)(分式方程的解)已知x=1是方程m2−x−1x−2=3的解,那么实数m的值为(
)A.−2 B.2 C.−4 D.4例2.(2023·广东)(分式方程的一般解法)方程1x−3=2x的解为A.x=−6 B.x=−2 C.例3.(2023·山西)(分式方程的一般解法)解方程:1x−1+1=3例4.(2023·上海)(分式方程的特殊解法—换元法)用换元法解方程x−1x2−x2x−1=3时,如果设A.y2+3y−1=0 B.y2−3y−1=0
C.例5.(2023·山东模拟)(分式方程的增根)关于x的分式方程mx−2−32−x=1有增根,则A.m=2 B.m=1 C.m=3 D.m=−3例6.(2023·广东)(由实际问题抽象出分式方程)随着城际交通的快速发展,某次动车平均提速60km/ℎ,动车提速后行驶480km与提速前行驶360km所用的时间相同.设动车提速后的平均速度为x km/ℎ,则下列方程正确的是(
)A.360x=480x+60 B.360x−60=【变式演练】1.(2023·黑龙江)已知关于x的分式方程mx−2+1=x2−x的解是非负数.则mA.m≤2 B.m≥2
C.m≤2且m≠−2 D.m<2且m≠−22.(2023·全国模拟)用换元法解方程2xx−1−3=x−1x时,设xx−1=yA.2y2−3y−1=0 B.3y2−2y+3=03.(2023·四川模拟)关于x的分式方程mx−2−32−x=1有增根,则mA.m=2 B.m=1 C.m=3 D.m4.(2023·江苏)解方程:2x−5x−2=3x−35.(2023·湖北)为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球.已知每个篮球的价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个.如果设每个足球的价格为x元,那么可列方程为(
)A.1500x+20−800x=5 B.1500x−20题型05分式方程的实际应用【解题策略】一、分式方程的应用:解分式方程应用题的关键是把握题意,找准等量关系,列出分式方程,最后要验根。二、列分式方程解应用题的一般步骤:①审,②设,③列,④解,⑤验,⑥答其中,检验这一步必须有!分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列分式方程的解;(2)检验所求的解是否符合实际.三、常见类型及关系式:【典例分析】例1.(2023·吉林)随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每大制作多少个摆件?
例2.(2023·辽宁)(2023·锦州中考)2023年5月15日,辽宁男篮取得第三次CBA总冠军,辽篮运动员的拼搏精神感染了众多球迷.某校篮球社团人数迅增,急需购进A,B两种品牌篮球,已知A品牌篮球单价比B品牌篮球单价的2倍少48元,采购相同数量的A,B两种品牌篮球,分别需要花费9600元和7200元.求A,B两种品牌篮球的单价分别是多少元.例3.(2023·山东模拟)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?【变式演练】1.(2023·吉林模拟)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.2.(2023·广东模拟)某工程队接到了修建3000米道路的施工任务,修到一半的时候,由于采用新的施工技术,修建效率提高为原来的1.5倍,结果提前5天完成了施工任务,问原来每天修多少米道路?3.(2023·山东)为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?4.(2023·辽宁)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.1.(2023·海南)若代数式x+2的值为7,则x等于(
)A.9 B.−9 C.5 D.−52.(2023·江苏)下列4组数中,不是二元一次方程2x+y=4的解的为(
)A.x=1,y=2 B.x=2,y=0 C.x=0.5,y=33.(2023·北京)(2020·北京·中考真题)方程组x−y=13x+y=7的解为
.4.(2023·天津)方程组y=2x3x+y=15的解是(
)A.x=2y=3 B.x=3y=6 C.x=4y=35.(2023·江苏)解二元一次方程组:x−y=13x+2y=8.6.(2023·四川)解方程组3x+y=8 ①2x−y=7 ②.7.(2023·四川)凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.
(1)求雷波脐橙和资中血橙每千克各多少元?
(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?8.(2023·四川)2022年8月27日至29日,以“新能源、新智造、新时代”为主题的世界清沽能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题,着力实现会展聚集带动产业聚集,其中德阳清洁能源装备特色小镇位于德阳经济技术开发区,规划面积4.82平方公里,计划2025年基本建成,若甲、乙两个工程队计划参与修建“特色小镇”中的某项工程,已知由甲单独施工需要18个月完成任务,若由乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元,向乙工程队支付施工费用5万元.
(1)乙队单独施工需要几个月才能完成任务?
(2)为保证该工程在两年内完工,且尽可能的减少成本,承建公司决定让甲、乙两个工程队同时施工,并将该工程分成两部分,甲队完成其中一部分工程用了a个月,乙队完成另一部分工程用了b个月,已知甲队施工时间不超过6个月,乙队施工时间不超过24个月,且a,b为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?9.(2023·广东)某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)车型甲乙丙汽车运载量(公斤/辆)600800900汽车运费(元/辆)500600700(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?10.(2023·山东)某商场购进了A,B两种商品,若销售10件A商品和20件B商品,则可获利280元;若销售20件A商品和30件B商品,则可获利480元.
(1)求A,B两种商品每件的利润;
(2)已知A商品的进价为24元/件,目前每星期可卖出200件A商品,市场调查反映:如调整A商品价格,每降价1元,每星期可多卖出20件,如何定价才能使A商品的利润最大?最大利润是多少?11.(2023·山西)风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.(1)求1个A部件和1个B部件的质量各是多少;(2)该卡车要运输这种成套设备通过此大桥,一次最多可运输多少套这种设备.12.(2023·湖北)为积极响应州政府“悦享成长⋅书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.
(1)男装、女装的单价各是多少?
(2)如果参加活动的男生人数不超过女生人数的23,购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?13.(2023·广东)在某文具用品商店购买3个篮球和1个足球共花费190元;购买2个篮球和3个足球共花费220元.
(1)求购买1个篮球和1个足球各需多少元?
(2)若计划用不超过900元购买篮球和足球共20个,那么最多可以购买多少个篮球?14.(2023·山东)若关于x的分式方程xx−1+1=m1−x的解为非负数,则mA.m≤1且m≠−1 B.m≥−1且m≠1
C.m<1且m≠−1 D.m>−1且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版学校校办工厂风险管理与承包经营合同3篇
- 二零二五年度木材市场行情预测与分析咨询合同4篇
- 2025年度环保材料研发与生产合作合同范本4篇
- 2025版旅游度假区租赁与旅游服务合作协议3篇
- 2025年度智能交通系统保密管理与服务合同
- 二零二五年度科技型中小企业贷款合同
- 2025年度知识产权授权委托书签订协议
- 2025年度门面出租合同终止与租赁合同终止后合同解除及违约赔偿协议
- 2025年度银行存款账户远程开户服务协议
- 2025年度私人房产使用权转让与智能家居系统安装合同
- 2024年全国体育专业单独招生考试数学试卷试题真题(含答案)
- 北师大版小学三年级上册数学第五单元《周长》测试卷(含答案)
- DB45T 1950-2019 对叶百部生产技术规程
- 2025届河北省衡水市衡水中学高考仿真模拟英语试卷含解析
- 新修订《保密法》知识考试题及答案
- 电工基础知识培训课程
- 住宅楼安全性检测鉴定方案
- 广东省潮州市潮安区2023-2024学年五年级上学期期末考试数学试题
- 市政道路及设施零星养护服务技术方案(技术标)
- 《论语》学而篇-第一课件
- 《写美食有方法》课件
评论
0/150
提交评论