版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024年江苏省盐城市东台第一教研片九上数学开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)2、(4分)无论k为何值时,直线y=k(x+3)+4都恒过平面内一个定点,这个定点的坐标为()A.(3,4) B.(3,﹣4) C.(﹣3,﹣4) D.(﹣3,4)3、(4分)某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分 B.87分 C.87.5分 D.90分4、(4分)关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A. B. C. D.5、(4分)如图,将点P(-2,3)向右平移n个单位后落在直线y=2x-1上的点P'处,则n等于()A.4 B.5 C.6 D.76、(4分)下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,第6个小房子用的石子数量为()A.87 B.77 C.70 D.607、(4分)如图,正方形网格中的每个小正方形的边长为1,将ΔABC绕旋转中心旋转某个角度后得到ΔA'B'C',其中点A,B,C的对应点是点AA.点Q B.点P C.点N D.点M8、(4分)如图,过对角线的交点,交于,交于,若的周长为36,,则四边形的周长为()A.24 B.26 C.28 D.20二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______10、(4分)甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,则成绩比较稳定的是(填“甲”或“乙”)11、(4分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为______.12、(4分)若式子有意义,则x的取值范围为___________.13、(4分)如图,等腰中,,,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.在图甲中画一个以AB为对角线的平行四边形.在图乙中画一个以AB为边的矩形.15、(8分)已知,如图,正方形的边长为4厘米,点从点出发,经沿正方形的边以2厘米/秒的速度运动;同时,点从点出发以1厘米/秒的速度沿向点运动,设运动时间为t秒,的面积为平方厘米.(1)当时,的面积为__________平方厘米;(2)求的长(用含的代数式表示);(3)当点在线段上运动,且为等腰三角形时,求此时的值;(4)求与之间的函数关系式.16、(8分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.(1)求购买这种商品的货款y(元)与购买数量x(件)之间的函数关系;(2)当x=3,x=6时,货款分别为多少元?17、(10分)市政某小组检修一条长的自来水管道,在检修了一半的长度后,提高了工作效率,每小时检修的管道长度是原计划的1.5倍,结果共用完成任务,求这个小组原计划每小时检修管道的长度.18、(10分)关于的方程有两个不相等的实数根.求实数的取值范围;是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若一元二次方程有两个不相同的实数根,则实数的取值范围________.20、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.21、(4分)如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.22、(4分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为_____.23、(4分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_______.二、解答题(本大题共3个小题,共30分)24、(8分)某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.25、(10分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.(1)求3、4两月房价平均每月增长的百分率;(2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?26、(12分)定义:有三个角相等的四边形叫做三等角四边形.(1)在三等角四边形中,,则的取值范围为________.(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;(3)如图②,三等角四边形中,,若,,,则的长度为多少?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.2、D【解析】
先变式解析式得到k的不定方程x+3)k=y-4,由于k有无数个解,则x+3=0且y-4=0,然后求出x、y的值即可得到定点坐标;【详解】解:∵y=k(x+3)+4,∴(x+3)k=y-4,∵无论k怎样变化,总经过一个定点,即k有无数个解,∴x+3=0且y-4=0,∴x=-3,y=4,∴一次函数y=k(x+3)+4过定点(-3,4);故选D.本题主要考查了一次函数图象上点的坐标特征,掌握一次函数图象上点的坐标特征是解题的关键.3、B【解析】
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:王老师的综合成绩为:90×40%+85×60%=87(分),
故选:B.此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.4、B【解析】
由方程有两个不相等的实数根结合根的判别式,可得出△=36-1k>0,解之即可得出实数k的取值范围.【详解】∵方程x2-1x+k=0有两个不相等的实数根,
∴△=(-1)2-1k=16-1k>0,
解得:k<1.
故选:B.此题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.5、A【解析】
由平移的性质得出P'的坐标,把P'点坐标代入直线y=2x-1上即可求出n的值;【详解】由题意得P'(-2+n,3),则3=2(-2+n)-1,解得n=4.故答案为A.本题主要考查了一次函数的图象,平移的性质,掌握一次函数的图象,平移的性质是解题的关键.6、D【解析】分析:要找这个小房子的规律,可以分为两部分来看:第一个屋顶是3,第二个屋顶是3.第三个屋顶是2.以此类推,第n个屋顶是2n-3.第一个下边是4.第二个下边是5.第三个下边是36.以此类推,第n个下边是(n+3)2个.两部分相加即可得出第n个小房子用的石子数是(n+3)2+2n-3=n2+4n,将n=7代入求值即可.详解:该小房子用的石子数可以分两部分找规律:屋顶:第一个是3,第二个是3,第三个是2,…,以此类推,第n个是2n-3;下边:第一个是4,第二个是5,第三个是36,…,以此类推,第n个是(n+3)2个.所以共有(n+3)2+2n-3=n2+4n.当n=6时,n2+4n=60,故选:D.点睛:本题考查了图形的变化类,分清楚每一个小房子所用的石子个数,主要培养学生的观察能力和空间想象能力.7、C【解析】
由图形绕某点旋转的性质(对应点到旋转中心的距离相等)可知旋转中心.【详解】解:点A的对应点是点A',由图像可得AM≠A'M,AP≠A'P,AQ≠A'Q,根据旋转的性质可知点M、P故选:C本题考查了图形的旋转,可由旋转的性质确定旋转前后两个图形的旋转中心,灵活应用旋转的性质是解题的关键.8、A【解析】
根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE=CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.【详解】在平行四边形ABCD中,2(AB+BC)=36,∴AB+BC=18,∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC∴∠AEF=∠CFE,在△AOE和△COF中∴△AOE≌△COF,∴AE=CF,OE=OF=3,∴EF=6∴AB+BF+FE+EA=AB+BF+CF+EF=AB+BC+EF=18+6=24故选:A.本题考查平行四边形的性质,解题的关键是熟练运用平行四边形的性质,本题属于中等题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、金额与数量【解析】
根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.【详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故答案为:金额与数量.本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.10、甲【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵,∴成绩比较稳定的是甲.11、【解析】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.12、x≥5【解析】
根据二次根式的性质,即可求解.【详解】因为式子有意义,可得:x-5≥1,解得:x≥5,故选A.主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.13、45°【解析】
由等腰△ABC中,AB=AC,∠A=30°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=(180°-30°)÷2=75°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=30°,∴∠CBE=∠ABC-∠ABE=75°-30°=45°.此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.三、解答题(本大题共5个小题,共48分)14、(1)作图见解析;(2)作图见解析.【解析】
直接利用平行四边形的性质得出符合题意的图形;直接利用矩形的性质得出符合题意的图形.【详解】如图甲所示:四边形ACBD是平行四边形;如图乙所示:四边形ABCD是矩形.此题主要考查了应用设计与作图,正确把握平行四边形以及矩形的性质是解题关键.15、(1)8;(1)BP=;(2);(3)S.【解析】
(1)先确定当t=1时P和Q的位置,再利用三角形面积公式可得结论;(1)分两种情况表示BP的长;(2)如图1,根据CQ=CP列方程可解答;(3)分两种情况:①当0≤t≤1时,P在AB上,如图2,②当1<t≤3时,P在BC上,如图3,根据三角形面积公式可得结论.【详解】(1)当t=1时,点P与B重合,Q在CD上,如图1,∴△APQ的面积8(平方厘米).故答案为:8;(1)分两种情况:当0≤t≤1时,P在AB上,BP=AB﹣AP=3﹣1t,当1<t≤3时,P在BC上,BP=1t﹣3;综上所述:BP=;(2)如图1.∵△PCQ为等腰三角形,∴CQ=CP,即t=8﹣1t,t,∴当点P在线段BC上运动,且△PCQ为等腰三角形时,此时t的值是秒;(3)分两种情况:①当0≤t≤1时,P在AB上,如图2.S3t②当1<t≤3时,P在BC上,如图3.S=S正方形ABCD﹣S△ABP﹣S△CPQ﹣S△ADQ=3×3t1﹣6t+16;综上所述:S与t之间的函数关系式为:S.本题是四边形的综合题,也是几何动点问题,主要考查了正方形的性质、三角形的面积、动点运动的路程,解题的关键是灵活运用所学知识,学会利用数形结合的思想解决问题.16、(1)y=(2)114【解析】试题分析:(1)根据题目条件:如果购买5件以上,则超过5件的部分打7折即可得到y
(元)与购买数量x
(件)之间的函数关系;
(2)把x=3,x=6分别代入(1)中的函数关系式即可求出贷款数.试题解析:(1)根据商场的规定,当0<x≤5时,y=20x,当x>5时,y=20×5+(x﹣5)×20×0.7=100+14(x﹣5),所以,货款y(元)与购买数量x(件)之间的函数关系是Y=(x是正整数);(2)当x=3时,y=20×3=60(元)当x=6时,y=100+14×(6﹣5)=114(元).17、这个小组原计划每小时检修管道长度为1m.【解析】
首先设这个小组原计划每小时检修管道长度为xm,然后根据题意可列出方程,解得即可.【详解】解:设这个小组原计划每小时检修管道长度为xm.由题意,得,解得x=1.经检验:x=1是原方程的解,且符合题意.答:这个小组原计划每小时检修管道长度为1m.此题主要考查分式方程的实际应用,关键是找出关系式,即可解题.18、(1)且;(2)不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】
由于方程有两个不相等的实数根,所以它的判别式,由此可以得到关于的不等式,解不等式即可求出的取值范围.首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于的等式,解出值,然后判断值是否在中的取值范围内.【详解】解:依题意得,,又,的取值范围是且;解:不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程的两根分别为,,由根与系数的关系有:,又因为方程的两个实数根之和等于两实数根之积的算术平方根,,,由知,,且,不符合题意,因此不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.本题重点考查了一元二次方程的根的判别式和根与系数的关系。一、填空题(本大题共5个小题,每小题4分,共20分)19、且【解析】
利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.【详解】解:根据题意得m≠1且△=(-2)2-4m>1,
解得m<1且m≠1.故答案为:m<1且m≠1.本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.20、【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【详解】解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),故答案为:(-2,-1).本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.21、1【解析】
先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.【详解】解:∵点E,F分别是的中点,∴FE是△BCD的中位线,.又∵E是BD的中点,∴Rt△ABD中,,故答案为1.本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.22、1【解析】
由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'=;故答案为1.此题考查菱形的性质,平移的性质,勾股定理,解题关键在于得到AO=OC=AC=2,OB=OD=BD=8.23、﹣1≤m≤1【解析】
此题涉及的知识点是根据平面直角坐标系建立不等式,先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【详解】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣1≤m≤1,故答案为﹣1≤m≤1.此题重点考查学生对于平面直角坐标系的性质,根据平面直角坐标系建立不等式,熟练掌握不等式计算方法是解题的关键.二、解答题(本大题共3个小题,共30分)24、1元【解析】
首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.【详解】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:,解方程,得x=1.经检验:x=1是原方程的根,且符合题意.答:跳绳的单价是1元.此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.【解析】
(1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.【详解】解:(1)设3、4两月房价平均每月增长的百分率为x,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牛蛙养殖可行性报告
- 2025年经济师考试旅游经济(初级)专业知识和实务试卷及解答参考
- 隧道坍塌演练方案
- 人工挖孔桩施工合同标准版可打印2篇
- 合同管理求职信
- 进口代理合同范本
- 全新合同钢结构
- 土地抵押合同
- 2024年二手房交易更名合同样本2篇
- 2024年度车间生产安全责任认定合同2篇
- 商场百货陈列培训
- 建筑工程质量通病与预防措施
- 第21课《蝉》课件-2024-2025学年统编版语文八年级上册
- 2024年四川甘孜州综合(卫生)事业单位招聘专业人才133人历年管理单位遴选500模拟题附带答案详解
- 2024秋期国家开放大学专本科《教育学》一平台在线形考(形考任务1至4及大作业)试题及答案
- 《药品经营质量管理规范》
- 四川省情知识考试复习题库(含答案)
- 保洁人员安全作业培训
- 高中家长会主题班会课件
- 第2节-第1课时-微生物的基本培养技术-课件【新教材】人教版高中生物选择性必修3
- 与信仰对话 课件-2024年入团积极分子培训
评论
0/150
提交评论