2025届湖南省湘南联盟高二上数学期末达标检测试题含解析_第1页
2025届湖南省湘南联盟高二上数学期末达标检测试题含解析_第2页
2025届湖南省湘南联盟高二上数学期末达标检测试题含解析_第3页
2025届湖南省湘南联盟高二上数学期末达标检测试题含解析_第4页
2025届湖南省湘南联盟高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省湘南联盟高二上数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知x是上的一个随机的实数,则使x满足的概率为()A. B.C. D.2.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.3.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.44.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.55.已知函数,若,则等于()A. B.1C.ln2 D.e6.若抛物线x=﹣my2的焦点到准线的距离为2,则m=()A.﹣4 B.C. D.±7.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−38.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切9.已知、、、是直线,、是平面,、、是点(、不重合),下列叙述错误的是()A.若,,,,则B.若,,,则C.若,,则D.若,,则10.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.14411.在空间四边形中,,,,且,则()A. B.C. D.12.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条二、填空题:本题共4小题,每小题5分,共20分。13.设实数x,y满足,则的最小值为______14.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.15.过点且与直线平行的直线的方程是______.16.抛物线的焦点坐标为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.18.(12分)已知圆C经过,,三点,并且与y轴交于P,Q两点,求线段PQ的长度.19.(12分)自2021年秋季起,江西省普通高中起始年级全面实施新课程改革,为了迎接新高考,某校举行物理和化学等选科考试,其中600名学生化学成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区间是:第一组,第二组,第三组,第四组,第五组.已知图中前三个组的频率依次构成等差数列,第一组和第五组的频率相同(1)求a,b的值;(2)估算高分(大于等于80分)人数;(3)估计这600名学生化学成绩的平均值(同一组中的数据用该组区间的中点值作代表)和中位数(中位数精确到0.1)20.(12分)已知抛物线的焦点为F,其中P为E的准线上一点,O是坐标原点,且(1)求抛物线E的方程;(2)过的直线与E交于C,D两点,在x轴上是否存在定点,使得x轴平分?若存在,求出点M的坐标;若不存在,请说明理由21.(12分)已知数列{an}为等差数列,且a1+a5=-12,a4+a8=0.(1)求数列{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的通项公式22.(10分)已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,设,求函数的单调区间.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先解不等式得到的范围,再利用几何概型的概率公式进行求解.【详解】由得,即,所以使x满足的概率为故选:B.2、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D3、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C4、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C5、D【解析】求导,由得出.【详解】,故选:D6、D【解析】把抛物线的方程化为标准方程,由焦点到准线的距离为,即可得到结果,得到答案.【详解】由题意,抛物线,可得,又由抛物线的焦点到准线的距离为2,即,解得.故选D.【点睛】本题主要考查了抛物线的标准方程,以及简单的几何性质的应用,其中解答中熟记抛物线的焦点到准线的距离为是解答的关键,着重考查了推理与计算能力,属于基础题.7、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B8、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在9、D【解析】由公理2可判断A选项;由公理3可判断B选项;利用平行线的传递性可判断C选项;直接判断线线位置关系,可判断D选项.【详解】对于A选项,由公理2可知,若,,,,则,A对;对于B选项,由公理3可知,若,,,则,B对;对于C选项,由空间中平行线的传递性可知,若,,则,C对;对于D选项,若,,则与平行、相交或异面,D错.故选:D.10、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A11、A【解析】利用空间向量的线性运算即可求解.【详解】..故选:A.12、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】画出可行域,利用目标函数的几何意义即可求解【详解】画出可行域和目标函数如图所示:根据平移知,当目标函数经过点时,有最小值为5.故答案为:5.14、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:15、【解析】设出直线的方程,代入点的坐标,求出直线的方程.【详解】设过点且与直线平行的直线的方程为,将代入,则,解得:,所以直线的方程为.故答案为:16、【解析】根据抛物线方程求得p,则根据抛物线性质可求得抛物线的焦点坐标.解:抛物线方程中p=2,∴抛物线焦点坐标为(-1,0)故填写考点:抛物线的简单性质点评:本题主要考查了抛物线的简单性质.属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【详解】(1)因为函数在上单调递增,所以在上恒成立,则有在上恒成立,即.令函数,,所以时,,在上单调递增,所以,所以有,即,因此.(2)由(1)可知当时,为增函数,不妨取,则有在上单调递增,所以,即有在上恒成立,令,则有,所以,所以,因此.【点睛】方法点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到18、【解析】设圆的方程为,代入点的坐标,求出,,,令,即可得出结论【详解】解:设圆的方程为,则,,,,,即,令,可得,解得、,所以、,或、,,19、(1)(2)90(3)平均值69.5;中位数69.4【解析】(1)由各矩形面积和为1列式即可;(2)由高分频率乘以600即可;(3)由平均数与中位数的估算方法列式即可.【小问1详解】由题意可知:解得小问2详解】高分的频率约为:故高分人数为:【小问3详解】平均值为,设中位数为x,则故中位数为69.420、(1)(2)存在;【解析】(1)设,利用向量坐标运算求出p即可;(2)设直线MC,MD的斜率分别为,,利用坐标计算恒成立,即可求解.【小问1详解】抛物线的焦点为,设,则,因为,所以,得所以抛物线E的方程为【小问2详解】假设在x轴上存在定点,使得x轴平分设直线的方程为,设点,,联立,可得∵恒成立,∴,设直线MC,MD的斜率分别为,,则由定点,使得x轴平分,则,所以把根与系数的关系代入可得,得故存在满足题意.综上所述,在x轴上存在定点,使得x轴平分21、(1)an=2n-12;(2).【解析】(1)根据等差数列的性质得到,然后根据等差数列的通项公式求出和的值即可.(2)根据(1)的条件求出b2=-24,b1=-8,然后根据等比数列的通项公式求出的值即可.【小问1详解】设等差数列{an}的公差为d,因为a1+a5=2a3=-12,a4+a8=2a6=0,所以,所以,解得,所以an=-10+2(n-1)=2n-12.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论