版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届内蒙古巴彦淖尔市临河区三中高一上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是A. B.C D.,2.已知,,,那么a,b,c的大小关系为()A. B.C. D.3.若点、、在同一直线上,则()A. B.C. D.4.如图,在正方体中,与平面所成角的余弦值是A. B.C. D.5.设,则函数的零点所在的区间为()A. B.C. D.6.下列函数在定义域内既是奇函数,又是减函数的是()A. B.C. D.7.若函数满足,,则下列判断错误的是()A. B.C.图象的对称轴为直线 D.f(x)的最小值为-18.幂函数,当时为减函数,则实数的值为A.或2 B.C. D.9.在长方体中,,,则直线与平面所成角的正弦值为()A. B.C. D.10.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.的值为______.12.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________13.已知函数=,若对任意的都有成立,则实数的取值范围是______14.若函数在区间上是单调递增函数,则实数的取值范围是_______.15.已知函数(且)只有一个零点,则实数的取值范围为______16.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.18.已知函数(I)若是第一象限角,且.求的值;(II)求使成立的x的取值集合19.已知函数为奇函数(1)求的值;(2)当时,关于的方程有零点,求实数的取值范围20.已知函数=(1)判断的奇偶性;(2)求在的值域21.在直角坐标平面内,角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,分别求sinα、cosα、tanα的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由偶函数在区间上单调递减,且,所以在区间上单调递增,且,即函数对应的图象如图所示,则不等式等价为或,解得或,故选B考点:不等关系式的求解【方法点晴】本题主要考查了与函数有关的不等式的求解,其中解答中涉及到函数的奇偶性、函数的单调性,以及函数的图象与性质、不等式的求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能,以及推理与运算能力,试题比较基础,属于基础题,本题的解得中利用函数的奇偶性和单调性,正确作出函数的图象是解答的关键2、B【解析】根据指数函数单调性比较大小.【详解】因为在上是增函数,又,所以,所以,故选B.【点睛】本题考查利用指数函数单调性比较指数幂的大小,难度较易.对于指数函数(且):若,则是上增函数;若,则是上减函数.3、A【解析】利用结合斜率公式可求得实数的值.【详解】因为、、在同一直线上,则,即,解得.故选:A.4、D【解析】连接,设正方体棱长为1.∵平面,∴∠为与平面所成角.∴故选D5、B【解析】根据的单调性,结合零点存在性定理,即可得出结论.【详解】在单调递增,且,根据零点存在性定理,得存在唯一的零点在区间上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题.6、D【解析】利用常见函数的奇偶性和单调性逐一判断即可.【详解】对于A,,是偶函数,不满足题意对于B,是奇函数,但不是减函数,不满足题意对于C,,是奇函数,因为是增函数,是减函数,所以是增函数,不满足题意对于D,是奇函数且是减函数,满足题意故选:D7、C【解析】根据已知求出,再利用二次函数的性质判断得解.【详解】解:由题得,解得,,所以,因为,所以选项A正确;所以,所以选项B正确;因为,所以选项D正确;因为的对称轴为,所以选项C错误故选:C8、C【解析】∵为幂函数,∴,即.解得:或.当时,,在上为减函数;当时,,在上为常数函数(舍去),∴使幂函数为上的减函数的实数的值.故选C.考点:幂函数的性质.9、D【解析】如图,连接交于点,连接,则结合已知条件可证得为直线与平面所成角,然后根据已知数据在求解即可【详解】解:如图,连接交于点,连接,因为长方体中,,所以四边形为正方形,所以,,所以,因为平面,所以,因为,所以平面,所以为直线与平面所成角,因为,,所以,在中,,所以直线与平面所成角的正弦值为,故选:D【点睛】此题考查线面角的求法,考查空间想象能力和计算能力,属于基础题10、B【解析】将写成分段函数,画出函数图象数形结合,即可求得结果.【详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、11【解析】进行对数和分数指数幂的运算即可【详解】原式故答案为:1112、【解析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.13、【解析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:14、【解析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围【详解】解:函数的对称轴方程为,因为函数在区间上是单调递增函数,所以,解得,故答案为:15、或或【解析】∵函数(且)只有一个零点,∴∴当时,方程有唯一根2,适合题意当时,或显然符合题意的零点∴当时,当时,,即综上:实数的取值范围为或或故答案为或或点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解16、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(2,3)对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞)可得b<a<c故答案为b<a<c三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据函数的奇偶性求出的值,结合反函数的概念求出,利用指数函数的性质求出的取值范围即可;(2)由对数函数概念可得,将原问题转化为在恒成立,结合二次函数的性质即可得出结果.【小问1详解】因为为R上的奇函数,所以,即,解得,所以,为R上的奇函数,所以符合题意.有令,则,得,由得,即,;【小问2详解】由,得,由恒成立可得恒成立,即在恒成立,所以0<k21-因为,所以,解得.所以k的取值范围是.18、(I)(II)【解析】该题属于三角函数的综合问题,在解题的过程中,第一问需要先化简函数解析式,在化简的过程中,应用正余弦的差角公式,化简后利用,从而求得,根据是第一象限角,从而确定出,利用倍角公式建立起所满足的等量关系式,从而求得结果,第二问将相应的函数解析式代入不等式,化简后得到,结合正弦函数的性质,可以求得结果试题解析:(1),求得,根据是第一象限角,所以,且;(2)考点:正余弦差角公式,辅助角公式,同角三角函数关系式,倍角公式,三角不等式19、(1)(2)【解析】(1)利用函数为奇函数所以即得的值(2)方程有零点,转化为求的值域即可得解.试题解析:(1)∵,∴,∴(2)∵,∴,∵,∴,∴,∴20、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GRP时间管理RevB》课件
- 2025年长沙货运从业资格证考试模拟考试题库答案
- 2025年内蒙古货物运输从业资格证考试题
- 2025年广安货运资格证考试题
- 2025年石家庄货运从业考试试题答案解析
- 粤教版八年级下册地理-第八章-珠江三角洲-单元检测
- 社区用电安全规定
- 四川省城市排水工程招标文件
- 文化产业园硅PU施工合同
- 装卸作业应急预案
- 南水北调江苏水源公司2024年校园招聘高频难、易错点500题模拟试题附带答案详解
- 幼儿园小班健康《打针吃药我不怕》课件
- 广州英语小学六年级英语六上册作文范文1-6单元
- 2025届上海市宝山区行知实验生物高一上期末教学质量检测模拟试题含解析
- 中国戏曲 昆曲学习通超星期末考试答案章节答案2024年
- 农村饮水安全动态监测工作方案
- 《司马光》公开课一等奖创新教案
- 中医药创新团队及人才支持计划实施方案、申报书
- 农场场长、副场长岗位责任制
- 2024年山东省青岛中德生态园(青岛国际经济合作区)管委会选聘52人历年高频500题难、易错点模拟试题附带答案详解
- “数字城市”公共智慧底座项目解决方案
评论
0/150
提交评论