




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市第二十七中学2025届高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列的前n项和为,若,,则()A.250 B.210C.160 D.902.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.103.已知矩形,为平面外一点,且平面,,分别为,上的点,且,,,则()A. B.C.1 D.4.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等5.命题“,”否定是()A., B.,C., D.,6.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.7.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.8.已知a,b为不相等实数,记,则M与N的大小关系为()A. B.C. D.不确定9.已知数列的前n项和为,,,则()A. B.C. D.10.在四棱锥中,四边形为菱形,平面,是中点,下列叙述正确的是()A.平面 B.平面C.平面平面 D.平面平面11.过椭圆+=1左焦点F1引直线交椭圆于A、B两点,F2是椭圆的右焦点,则△ABF2的周长是()A.20 B.18C.10 D.1612.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.820二、填空题:本题共4小题,每小题5分,共20分。13.定义在上的函数满足:有成立且,则不等式的解集为__________14.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图,则a=______________15.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.16.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面底面ABCD,,,,,(1)证明:是直角三角形;(2)求平面PCD与平面PAB的夹角的余弦值18.(12分)求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点;(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.19.(12分)已知等差数列的前n项和为,且.(1)求数列的通项公式及;(2)设,求数列的前n项和.20.(12分)如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)证明:AC∥平面BEF;(2)求点C到平面BEF的距离21.(12分)如图,已知椭圆的短轴端点为、,且,椭圆C的离心率,点,过点P的动直线l椭圆C交于不同的两点M、N与,均不重合),连接,,交于点T(1)求椭圆C的方程;(2)求证:当直线l绕点P旋转时,点T总在一条定直线上运动;(3)是否存在直线l,使得?若存在,求出直线l的方程;若不存在,请说明理由22.(10分)已知椭圆过点,且离心率为.(1)求椭圆的方程;(2)过作斜率分别为的两条直线,分别交椭圆于点,且,证明:直线过定点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设为等比数列,由此利用等比数列的前项和为能求出结果【详解】设,等比数列的前项和为为等比数列,为等比数列,解得故选:B2、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.3、B【解析】由,,得,然后利用向量的加减法法则把向量用向量表示出来,可求出的值,从而可得答案【详解】解:因为,,所以所以,因为,所以,所以,故选:B4、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.5、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.6、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.7、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.8、A【解析】利用作差法即可比较M与N的大小﹒【详解】因为,又,所以,即故选:A9、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D10、D【解析】利用反证法可判断A选项;利用面面垂直的性质可判断BC选项;利用面面垂直的判定可判断D选项.【详解】对于A选项,因为四边形为菱形,则,平面,平面,平面,若平面,因为,则平面平面,事实上,平面与平面相交,假设不成立,A错;对于B选项,过点在平面内作,垂足为点,平面,平面,则,,,平面,而过作平面的垂线,有且只有一条,故与平面不垂直,B错;对于C选项,过点在平面内作,垂足为点,因为平面,平面,则,,,则平面,若平面平面,过点在平面内作,垂足为点,因为平面平面,平面平面,平面,平面,而过点作平面的垂线,有且只有一条,即、重合,所以,平面平面,所以,,但四边形为菱形,、不一定垂直,C错;对于D选项,因为四边形为菱形,则,平面,平面,,,平面,因为平面,因此,平面平面平面,D对.故选:D.11、A【解析】根据椭圆的定义求得正确选项.【详解】依题意,根据椭圆的定义可知,三角形的周长为.故选:A12、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,判断出函数的单调性,利用单调性解即可【详解】设,又有成立,函数,即是上的增函数,,即,,故答案为:14、3##【解析】由频率之和等于1,即矩形面积之和为1可得.【详解】由题知,解得.故答案为:0.315、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:16、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接BD,在四边形ABCD中求得,在中,取得,得到,由线面垂直的性质证得平面,得到,再由线面垂直的判定定理,证得平面PBD,进而得到,即可证得是直角三角形(2)以为原点,以所在直线为x轴,过点且与平行直线为y轴,所在直线为z轴,建立的空间直角坐标系,分别求得平面和平面的法向量,利用向量的夹角公式,即可求解.【小问1详解】证明:如图所示,连接BD,因为四边形中,可得,,,所以,,则在中,由余弦定理可得,所以,所以因为平面底面,平面底面,底面ABCD,所以平面PAB,因为平面PAB,所以,因为,,所以平面PBD因为平面PBD,所以,即是直角三角形【小问2详解】解:由(1)知平面PAB,取AB的中点O,连接PO,因为,所以,因为平面,平面底面,平面底面,所以底面,以为原点,以所在直线为x轴,过点且与平行的直线为y轴,所在直线为z轴,建立如图所示的空间直角坐标系,设,则,,,,,可得,,,设平面的一个法向量为,则,令,可得,,所以,因为是平面的一个法向量,所以,即平面与平面的夹角的余弦值为18、(1)或(2)【解析】(1)待定系数法去求椭圆的标准方程即可;(2)待定系数法去求椭圆的标准方程即可.【小问1详解】当椭圆焦点在x轴上时,方程可设为,将点代入得,解之得,则所求椭圆方程为当椭圆焦点在y轴上时,方程可设为,将点代入得,解之得,则所求椭圆方程为【小问2详解】椭圆方程可设为,则,解之得,则椭圆方程为19、(1)(2)【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,利用等差数列的通项公式可求得数列的通项公式,利用等差数列前n项和公式求出;(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式,;【小问2详解】由(1)可得,所以,所以.20、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,进而求出平面BEF的法向量,然后证明线面平行;(2)算出在向量方向上的投影,进而求得答案.【小问1详解】因为DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因为ABCD是正方形,所以DA⊥DC.以D为坐标原点,所在方向分别为轴的正方向建立空间直角坐标系,则A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(2,0,1),所以,,设平面BEF的法向量,因为,所以-2x-2y+2z=0,-2y+z=0,令y=1,则=(1,1,2),又因为=(-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小问2详解】设点C到平面BEF的距离为d,而,所以,所以点C到平面BEF的距离为21、(1)(2)证明见解析;(3)不存在直线l,使得成立,理由见解析.【解析】(1)根据题意,列出方程组,求得,即可求得椭圆的方程;(2)设直线的方程为,联立方程组求得,设,根据和在同一条直线上,列出方程求得的值,即可求解;(3)设直线的为,把转化为,联立方程组求得,代入列方程,求得,即可得到结论.【小问1详解】解:由题意可得,解得,所以所求椭圆的方程为.【小问2详解】解:由题意,因为直线过点,可设直线的方程为,,联立方程组,整理得,可得,因为直线与椭圆有两个交点,所以,解得,设,因为在同一条直线上,则,①又由在同一条直线上,则,②由①+②3所以,整理得,解得,所以点在直线,即当直线l绕点P旋转时,点T总在一条定直线上运动.【小问3详解】解:由(2)知,点在直线上运动,即,设直线的方程为,且,又由且,可得,即,联立方程组,整理得,可得,代入可得,解得,即,此时直线的斜率不存在,不合题意,所以不存在直线l,使得成立.22、(1);(2)证明见解析.【解析】(1)由离心率、过点和椭圆关系可构造方程求得,由此可得椭圆方程;(2)当直线斜率不存在时,表示出两点坐标,由两点连线斜率公式表示出,整理可得直线为;当直线斜率存在时,设,与椭圆方程联立可得韦达定理的形式,代入中整理可得,由此可得直线所过定点;综合两种情况可得直线过定点.【详解】(1)椭圆过点,即,;,又,,椭圆的方程为:.(2)当直线斜率不存在时,设直线方程为,则,则,,解得:,直线方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林农业大学《大数据专业英语》2023-2024学年第二学期期末试卷
- 毕节工业职业技术学院《计量统计学》2023-2024学年第二学期期末试卷
- 烟台大学《对外汉语教学法》2023-2024学年第二学期期末试卷
- 梅河口康美职业技术学院《计算机专业英语阅读》2023-2024学年第二学期期末试卷
- 海南省东方市民族中学2024-2025学年高三下学期第二次月考历史试题试卷含解析
- 江苏省泰安市长城中学2025年高三下学期3月月考(文理)语文试题含解析
- 广东工程职业技术学院《行业创业实务》2023-2024学年第二学期期末试卷
- 大理护理职业学院《数学史与数学思想方法》2023-2024学年第二学期期末试卷
- 广西壮族自治区百色市田东中学2025届高三生物试题一模试卷含解析
- 1.2 《离骚(节选)》 任务式课件(共51张) 2024-2025学年统编版统编版高中语文选择性必修下册
- 建筑空间组合论
- 特种工作作业人员体格检查表
- 清远市城市树木修剪技术指引(试行)
- 广州国际文化中心详细勘察报告正文-171229end
- 警察礼仪(PPT53页)
- 《关于加强高等学校食堂管理工作的意见》解读
- 《尚艺发型标准剪裁》PPT课件
- 中国现代文学史00537
- 110kV升压站电气施工工艺及方案培训资料(共107页)
- 年产万吨碳酸饮料厂的工艺设计
- 流砂过滤器设计说明书
评论
0/150
提交评论