版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市靖安县2025届数学高二上期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,设,若F为BC的中点,P为EF的中点,则=()A. B.C. D.2.九连环是我国从古至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数决定解开圆环的个数.在某种玩法中,用表示解开n(,)个圆环所需的最少移动次数,若数列满足,且当时,则解开5个圆环所需的最少移动次数为()A.10 B.16C.21 D.223.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.4.一个袋中装有大小和质地相同的5个球,其中有2个红色球,3个绿色球,从袋中不放回地依次随机摸出2个球,下列结论正确的是()A.第一次摸到绿球的概率是 B.第二次摸到绿球的概率是C.两次都摸到绿球的概率是 D.两次都摸到红球的概率是5.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.6.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.7.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.8.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟9.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.10.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.11.命题:“,”的否定是()A., B.,C., D.,12.设双曲线与幂函数的图象相交于,且过双曲线的左焦点的直线与函数的图象相切于,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某部门计划对某路段进行限速,为调查限速60km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按,,,分组,绘制成如图所示频率分布直方图.则________;这300辆汽车中车速低于限速60km/h的汽车有______辆.14.若直线与圆有公共点,则b的取值范围是_____15.已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______16.函数的单调递减区间是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)18.(12分)2020年10月,中共中央办公厅、国务院办公厅印发了《关于全面加强和改进新时代学校体育工作的意见》,某地积极开展中小学健康促进行动,发挥以体育智、以体育心功能,决定在2021年体育中考中再增加一定的分数,规定:考生须参加立定跳远、掷实心球、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校为掌握九年级学生一分钟跳绳情况,随机抽取了100名学生测试,其一分一分钟跳绳个数成绩(分)1617181920频率(1)若每分钟跳绳成绩不足18分,则认为该学生跳绳成绩不及格,求在进行测试的100名学生中跳绳成绩不及格的人数为多少?(2)该学校决定由这次跳绳测试一分钟跳绳个数在205以上(包括205)的学生组成“小小教练员"团队,小明和小华是该团队的成员,现学校要从该团队中选派2名同学参加某跳绳比赛,求小明和小华至少有一人被选派的概率19.(12分)已知圆,直线(1)判断直线l与圆C的位置关系;(2)过点作圆C的切线,求切线的方程20.(12分)在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.21.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为6.(1)求抛物线的方程;(2)若不过原点的直线与抛物线交于A、B两点,且,求证:直线过定点并求出定点坐标.22.(10分)已知点F为抛物线的焦点,点在抛物线上,且.(1)求该抛物线的方程;(2)若点A在第一象限,且抛物线在点A处的切线交y轴于点M,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】作出图示,根据空间向量的加法运算法则,即可得答案.【详解】如图示:连接OF,因为P为EF中点,,F为BC的中点,则,故选:A2、D【解析】根据题意,结合数列递推公式,代入计算即可.【详解】根据题意,由,得.故选:D.3、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.4、C【解析】对选项A,直接求出第一次摸球且摸到绿球的概率;对选项B,第二次摸到绿球分两种情况,第一次摸到绿球且第二也摸到绿球和第一次摸到红球且第二次摸到绿球;对选项C,直接求出第一次摸到绿球且第二也摸到绿球的概率;对选项D,直接求出第一次摸到红球且第二也摸到红球的概率【详解】对选项A,第一次摸到绿球的概率为:,故错误;对选项B,第二次摸到绿球的概率为:,故错误;对选项C,两次都摸到绿球的概率为:,故正确;对选项D,两次都摸到红球的概率为:,故错误故选:C5、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.6、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D7、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:8、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.9、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C10、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.11、D【解析】利用全称量词命题的否定可得出结论.【详解】由全称量词命题的否定可知,命题“,”的否定是“,”.故选:D.12、B【解析】设直线方程为,联立,利用判别式可得,进而可求,再结合双曲线的定义可求,即得.【详解】可设直线方程为,联立,得,由题意得,∴,,∴,即,由双曲线定义得,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】根据个小矩形面积之和为1即可求出的值;根据频率分布直方图可以求出车速低于限速60km/h的频率,从而可求出汽车有多少辆【详解】由解得:这300辆汽车中车速低于限速60km/h的汽车有故答案为:;14、【解析】直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数取值范围是.故答案为:15、##【解析】根据题设及双曲线离心率公式可得,结合双曲线离心率的性质即可求离心率.【详解】由题设,,整理得:,所以,而,故.故答案为:.16、【解析】求导,根据可得答案.【详解】由题意,可得,令,即,解得,即函数的递减区间为.故答案为:.【点睛】本题考查运用导函数的符号,研究函数的单调性,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解】(1)由抛物线的定义得到准线的距离都是p,所以|AB|=2p=4,所以抛物线的方程为y2=4x(2)设直线l的方程为y=k(x-1),P(x1,y1),Q(x2,y2)因为直线l与抛物线有两个交点,所以k≠0,得,代入y2=4x,得,且恒成立,则,y1y2=-4,所以又点O到直线l的距离,所以,解得,即【点睛】本题主要考查直线与抛物线的位置关系的相关问题,意在考查综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题18、(1)14人;(2).【解析】(1)根据频率直方表区间成绩及其对应的频率,即可求每分钟跳绳成绩不足18分的人数.(2)由表格数据求出一分钟跳绳个数在205以上(包括205)的学生共6人,列举出六人中选两人参加比赛的所有情况、小明和小华至少有一个被选派的情况,由古典概型的概率求法即可得小明和小华至少有一人被选派的概率.【详解】(1)由表可知,每分钟跳绳成绩不足18分,即为成绩是16分或17分,在进行测试的100名学生中跳绳成绩不及格人数为:人)(2)一分钟跳绳个数在205以上(包括205)的学生频率为,其人数为:(人),记小明为,小华为,其余四人为,则在这六人中选两人参加比赛的所有情况为:,共15种,其中小明和小华至少有一个被选派的情况有:,共9种,小明和小华至少有一人被选派的概率为:.19、(1)相交.(2)或.【解析】(1)先判断出直线恒过定点(2,1),由(2,1)在圆内,即可判断;(2)分斜率存在与不存在两种情况,利用几何法求解.【小问1详解】直线方程,即,则直线恒过定点(2,1).因为,则点(2,1)位于圆的内部,故直线与圆相交.【小问2详解】直线斜率不存在时,直线满足题意;②直线斜率存在的时候,设直线方程为,即.因为直线与圆相切,所以圆心到直线的距离等于半径,即,解得:,则直线方程为:.综上可得,直线方程或.20、(1)(2)【解析】(1)由定义证明数列是等差数列,再由得出通项公式;(2)先由求和公式得出,再由裂项相消求和法求和即可.【小问1详解】由题意可知,,所以数列是公差的等差数列又,所以,故小问2详解】,则故21、(1)(2)证明见解析,定点坐标为(8,0).【解析】(1)根据抛物线的定义,即可求出结果;(2)由题意直线方程可设为,将其与抛物线方程联立,再将转化为,根据韦达定理,化简求解,即可求出定点.【小问1详解】解:抛物线的顶点在原点,焦点在轴上,且抛物线上有一点,设抛物线的方程为,到焦点的距离为6,即有点到准线的距离为6,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度餐饮商铺装修设计租赁合同
- 2025年度美容院跨区域入股合作合同协议书
- 2025年退休返聘人员解除工作合同协议
- 2025年度老年公寓护理员劳动保护与职业发展合同
- 二零二五年度租赁房屋押金管理服务合同
- 2025年度集体林权流转合同范本(林业生态补偿)
- 二零二五年度房地产开发项目预付款合同
- 2025年度租房合同及房东房屋安全承诺书
- 2025年度能源合同能源管理项目违约金赔偿标准及节能减排效果
- 2025年建筑施工项目管理合同
- 2024年公安机关理论考试题库附答案【考试直接用】
- 课题申报参考:共同富裕进程中基本生活保障的内涵及标准研究
- 2025中国联通北京市分公司春季校园招聘高频重点提升(共500题)附带答案详解
- 2024年度中国邮政集团公司县分公司工作总结
- 产程中的人文关怀护理
- 开工第一课安全教育记录表
- 2024年黑龙江农业职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 基于数据驱动的锂离子电池剩余使用寿命预测方法研究
- 《内脏疾病康复》课件
- 家具厂各岗位责任制汇编
- 提高检验标本合格率品管圈PDCA成果汇报
评论
0/150
提交评论