版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省宝鸡市部分高中2025届高一上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的值域为,那么的取值范围是()A. B.C. D.2.含有三个实数的集合可表示为{a,,1},也可表示为{a2,a+b,0},则a2012+b2013的值为()A.0B.1C.-1D.±13.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1004.已知函数,则是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数5.若,则终边在()A.第一、三象限 B.第一、二象限C.第二、四象限 D.第三、四象限6.已知的图象在上存在个最高点,则的范围()A. B.C. D.7.三个数的大小关系是()A. B.C. D.8.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.9.已知,则的值为()A.-4 B.C. D.410.已知锐角终边上一点A的坐标为,则的弧度数为()A.3 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于不等式的解集为,则的最小值是___________.12.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________13.集合,,则__________.14.若函数在区间上单调递减,在上单调递增,则实数的取值范围是_________15.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________16.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的单调区间;(2)求函数图象的对称中心的坐标和对称轴方程18.已知,(1)求和的值(2)求以及的值19.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围20.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围21.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先求得时的值域,再根据题意,当时,值域最小需满足,分析整理,即可得结果.【详解】当,,所以当时,,因为的值域为R,所以当时,值域最小需满足所以,解得,故选:C【点睛】本题考查已知函数值域求参数问题,解题要点在于,根据时的值域,可得时的值域,结合一次函数的图像与性质,即可求得结果,考查分析理解,计算求值的能力,属基础题.2、B【解析】根据题意,由{a,,1}={a2,a+b,0}可得a=0或=0,又由的意义,则a≠0,必有=0,则b=0,则{a,0,1}={a2,a,0},则有a2=1,即a=1或a=-1,集合{a,0,1}中,a≠1,则必有a=-1,则a2012+b2013=(-1)2012+02013=1,故选B点睛:集合的三要素是:确定性、互异性和无序性,集合的表示常用的有三种形式:列举法,描述法,Venn图法.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.3、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.4、B【解析】先求得,再根据余弦函数的周期性、奇偶性,判断各个选项是否正确,从而得出结论【详解】∵,∴=,∵,且T=,∴是最小正周期为偶函数,故选B.【点睛】本题主要考查诱导公式,余弦函数的奇偶性、周期性,属于基础题5、A【解析】分和讨论可得角的终边所在的象限.【详解】解:因为,所以当时,,其终边在第三象限;当时,,其终边在第一象限.综上,的终边在第一、三象限.故选:A.6、A【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.【详解】由题可知,解得,则,故选:A【点睛】本题考查正弦函数图像的性质与周期,属于中档题.7、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A8、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.9、A【解析】由题,解得.故选A.10、C【解析】先根据定义得正切值,再根据诱导公式求解【详解】由题意得,选C.【点睛】本题考查三角函数定义以及诱导公式,考查基本分析化简能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:12、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.13、【解析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【详解】因为,,所以.故答案为:【点睛】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.14、【解析】反比例函数在区间上单调递减,要使函数在区间上单调递减,则,还要满足在上单调递增,故求出结果【详解】函数根据反比例函数的性质可得:在区间上单调递减要使函数在区间上单调递减,则函数在上单调递增则,解得故实数的取值范围是【点睛】本题主要考查了函数单调性的性质,需要注意反比例函数在每个象限内是单调递减的,而在定义域内不是单调递减的15、55【解析】用减去销量为的概率,求得日销售量不低于50件的概率.【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55.故答案为:【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.16、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为(2)对称中心的坐标为;对称轴方程为【解析】(1)将函数转化为,利用正弦函数的单调性求解;(2)利用正弦函数的对称性求解;【小问1详解】解:由.令,解得,令,解得,故函数的增区间为,减区间为;【小问2详解】令,解得,可得函数图象的对称中心的坐标为,令,解得,可得函数图象的对称轴方程为18、(1),(2),【解析】(1)根据三角函数的基本关系式,准确运算,即可求解;(2)利用两角差的正弦公式和两角和的正切公式,准确运算,即可求解.【小问1详解】因为,根据三角函数的基本关系式,可得,又因为,所以,且.【小问2详解】由,和根据两角差的正弦公式,可得,再结合两角和的正切公式,可得19、(1)(2)【解析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.20、(1)0;(2)偶函数;(3)见解析【解析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【点睛】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新时代教育政策创新-洞察分析
- 腕关节骨性结构疲劳损伤预测-洞察分析
- 移动支付安全风险评估-第1篇-洞察分析
- 药店特许经营模式创新-洞察分析
- 云游戏跨域协作机制-洞察分析
- 药酒治疗风湿病疗效-洞察分析
- 渔业生态保护与修复-第2篇-洞察分析
- 元宇宙企业品牌塑造-洞察分析
- 医疗器械出口市场拓展-洞察分析
- 水电安装行业市场壁垒-洞察分析
- 营销管理智慧树知到期末考试答案2024年
- 【课件】丹纳赫DBS-问题解决培训
- 现代食品加工技术(食品加工新技术)智慧树知到期末考试答案2024年
- 2023全国职业院校技能大赛(网络建设与运维赛项)备考试题库
- “牢固树立法纪意识,强化责任担当”心得体会(2篇)
- 列车车门故障应急处理方案
- 2024年度-Pitstop教程去水印
- 2024年02月天津市口腔医院派遣制人员招考聘用40人笔试历年(2016-2023年)真题荟萃带答案解析
- 声明书:个人婚姻状况声明
- 幼儿园年检整改专项方案
- 新管径流速流量对照表
评论
0/150
提交评论