![2025届江苏省南通市通州区高一数学第一学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view7/M00/13/13/wKhkGWcIC6OAHw8GAAHNaWhbyMk292.jpg)
![2025届江苏省南通市通州区高一数学第一学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view7/M00/13/13/wKhkGWcIC6OAHw8GAAHNaWhbyMk2922.jpg)
![2025届江苏省南通市通州区高一数学第一学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view7/M00/13/13/wKhkGWcIC6OAHw8GAAHNaWhbyMk2923.jpg)
![2025届江苏省南通市通州区高一数学第一学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view7/M00/13/13/wKhkGWcIC6OAHw8GAAHNaWhbyMk2924.jpg)
![2025届江苏省南通市通州区高一数学第一学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view7/M00/13/13/wKhkGWcIC6OAHw8GAAHNaWhbyMk2925.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南通市通州区高一数学第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(且)的图象恒过定点,点又在幂函数的图象上,则的值为()A.-8 B.-9C. D.2.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.3.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A'DE是△ADE绕DE旋转过程中的一个图形(A'不与A,F重合),则下列命题中正确的是()①动点A'在平面ABC上的射影在线段AF上;②BC∥平面A'DE;③三棱锥A'-FED的体积有最大值.A.① B.①②C.①②③ D.②③4.“当时,幂函数为减函数”是“或2”的()条件A.既不充分也不必要 B.必要不充分C.充分不必要 D.充要5.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.6.以下给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.7.下列四个选项中正确的是()A B.C. D.8.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,9.若函数的定义域和值域都为R,则关于实数a的下列说法中正确的是A.或3 B.C.或 D.10.设,则a,b,c的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数12.函数的定义域是______13.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______14.若不等式对一切恒成立,则a的取值范围是______________.15.定义域为R,值域为-∞,116.若在上恒成立,则k的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数当时,求函数的零点;若,当时,求x的取值范围18.已知点,,动点P满足若点P为曲线C,求此曲线的方程;已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程19.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.20.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求证:(1)3∈A;(2)偶数4k-2(k∈Z)不属于A21.已知角终边与单位圆交于点(1)求的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令,可得点,设,把代入可得,从而可得的值.【详解】∵,令,得,∴,∴的图象恒过点,设,把代入得,∴,∴,∴.故选:A2、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.3、C【解析】【思路点拨】注意折叠前DE⊥AF,折叠后其位置关系没有改变.解:①中由已知可得平面A'FG⊥平面ABC∴点A'在平面ABC上的射影在线段AF上.②BC∥DE,BC⊄平面A'DE,DE⊂平面A'DE,∴BC∥平面A'DE.③当平面A'DE⊥平面ABC时,三棱锥A'-FED的体积达到最大.4、C【解析】根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可.【详解】当时,幂函数为减函数,所以有,所以幂函数为减函数”是“或2”的充分不必要条件,故选:C5、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.6、A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值【详解】程序运行过程中,各变量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此类推,第十圈:S=1+,k=11退出循环其中判断框内应填入的条件是:k≤10,故选A【点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误7、D【解析】根据集合与集合关系及元素与集合的关系判断即可;【详解】解:对于A:,故A错误;对于B:,故B错误;对于C:,故C错误;对于D:,故D正确;故选:D8、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.9、B【解析】若函数的定义域和值域都为R,则.解得或3.当时,,满足题意;当时,,值域为{1},不满足题意.故选B.10、D【解析】根据指数函数的性质求得,,根据对数函数的性质求得,即可得到答案.【详解】由题意,根据指数函数的性质,可得,由对数函数的性质,知,即所以.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、奇函数【解析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【详解】,令,得,,再令,得,是上的奇函数;【点睛】本题考查了赋值法及奇函数的定义12、【解析】,即定义域为点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)13、【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.考点:圆锥的侧面展开图与体积.14、【解析】先讨论时不恒成立,再根据二次函数的图象开口方向、判别式进行求解.【详解】当时,则化为(不恒成立,舍),当时,要使对一切恒成立,需,即,即a的取值范围是.故答案为:.15、fx【解析】利用基本初等函数的性质可知满足要求的函数可以是fx=1-a【详解】因为fx=2x的定义域为所以fx=-2x的定义域为则fx=1-2x的定义域为所以定义域为R,值域为-∞,1的一个减函数是故答案为:fx16、【解析】首先参变分离得到在上恒成立,接着分段求出函数的最小值,最后给出k的取值范围即可.【详解】因为在上恒成立,所以在上恒成立,当时,,所以,所以,所以;当时,,所以,所以,所以;综上:k的取值范围为.故答案为:.【点睛】本题是含参数的不等式恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】由分段函数解析式可得时无零点;讨论,,解方程即可得到所求零点;求得的解析式,讨论,,解不等式组即可得到所求范围【详解】解:函数,可得时,无解;当时,无解;当时,即,可得;综上可得时,无零点;时,零点为;,,当时,即有或,可得或且,综上可得x的范围是【点睛】本题考查分段函数、函数零点和解不等式等知识,属于中档题18、(1)(2)或【解析】设,由动点P满足,列出方程,即可求出曲线C的方程设直线l在坐标轴上的截距为a,当时,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程与圆的方程联立方程组,根据由直线l与曲线C只有一个公共点,即可求出直线l的方程【详解】设,点,,动点P满足,整理得:,曲线C方程为设直线l的横截距为a,则直线l的纵截距也为a,当时,直线l过,设直线方程为把代入曲线C的方程,得:,,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程为,把代入曲线C的方程,得:,直线l与曲线C只有一个公共点,,解得,直线l的方程为或【点睛】本题主要考查了曲线轨迹方程的求法,以及直线与圆的位置关系的应用,其中解答中熟记直接法求轨迹的方法,以及合理使用直线与圆的位置关系是解答的关键,着重考查了推理与运算能力,以及转化思想的应用,属于基础题19、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.20、(1)见解析;(2)见解析.【解析】(1)由3=22-12即可证得;(2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分当m,n同奇或同偶时和当m,n一奇,一偶时两种情况进行否定即可.试题解析:(1)∵3=22-12,3∈A;(2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新时代教育政策创新-洞察分析
- 腕关节骨性结构疲劳损伤预测-洞察分析
- 移动支付安全风险评估-第1篇-洞察分析
- 药店特许经营模式创新-洞察分析
- 云游戏跨域协作机制-洞察分析
- 药酒治疗风湿病疗效-洞察分析
- 渔业生态保护与修复-第2篇-洞察分析
- 元宇宙企业品牌塑造-洞察分析
- 医疗器械出口市场拓展-洞察分析
- 水电安装行业市场壁垒-洞察分析
- 减重手术全流程
- 模拟集成电路设计魏廷存课后参考答案
- 船舶加油作业安全操作规程
- 资质挂靠协议书
- 重庆市两江新区八年级(上)期末语文试卷(含解析)
- 高速公路改扩建工程路基拼接技术
- 七人学生小品《如此课堂》剧本台词手稿
- 出境竹木草制品公司不合格产品召回制度
- POWERPOINT教学案例优秀6篇
- RFJ05-2009-DQ人民防空工程电气大样图集
- 建筑物理课后习题参考
评论
0/150
提交评论