湖南省古丈县一中2025届高二上数学期末教学质量检测试题含解析_第1页
湖南省古丈县一中2025届高二上数学期末教学质量检测试题含解析_第2页
湖南省古丈县一中2025届高二上数学期末教学质量检测试题含解析_第3页
湖南省古丈县一中2025届高二上数学期末教学质量检测试题含解析_第4页
湖南省古丈县一中2025届高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省古丈县一中2025届高二上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的左、右顶点分别为、,左、右焦点分别为、,以为直径的圆与双曲线左支的一个交点为若以为直径的圆与直线相切,则的面积为()A. B.C. D.2.如图在平行六面体中,与的交点记为.设,,,则下列向量中与相等的向量是()A. B.C. D.3.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或4.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.5.五行学说是中华民族创造的哲学思想.古代先民认为,天下万物皆由五种元素组成,分别是金、木、水、火、土,彼此之间存在如图所示的相生相克关系.若从金、木、水、火、土五种元素中任取两种,则这两种元素恰是相生关系的概率是()A. B.C. D.6.在平行六面体中,点P在上,若,则()A. B.C. D.7.命题:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>08.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.9.已知不等式解集为,下列结论正确的是()A. B.C. D.10.数列满足,则数列的前n项和为()A. B.C. D.11.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.12.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,最后一句“返回家乡”是“攻破楼兰”的()A.必要条件 B.充分条件C.充要条件 D.既不充分也不必要二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则使得成立的n的最小值为__________.14.经过点作直线,直线与连接两点线段总有公共点,则直线的斜率的取值范围是________15.已知向量、满足,,且,则与的夹角为___________.16.已知数列是公差不为零的等差数列,,,成等比数列,第1,2项与第10,11项的和为68,则数列的通项公式是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和(1)求的通项公式;(2)若数列的前n项和,求数列的前n项和18.(12分)已知圆心为的圆经过,两点,且圆心在直线上,求此圆的标准方程.19.(12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值(1)求a,b,c的值;(2)求y=f(x)在区间[-3,1]上最大值和最小值20.(12分)已知等差数列中,,.(1)求的通项公式;(2)求的前项和的最大值.21.(12分)圆心在轴正半轴上、半径为2的圆与直线相交于两点且.(1)求圆的标准方程;(2)若直线,圆上仅有一个点到直线的距离为1,求直线的方程.22.(10分)已知内角A,B,C的对边分别为a,b,c,且B,A,C成等差数列.(1)求A的大小;(2)若,且的面积为,求的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】据三角形中位线可得;再由双曲线的定义求出,进而求出的面积【详解】双曲线的方程为:,,设以为直径的圆与直线相切与点,则,且,,∥.又为的中点,,又,,的面积为:.故选:C2、B【解析】利用空间向量的加法和减法法则可得出关于、、的表达式.【详解】故选:B.3、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒4、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.5、C【解析】先计算从金、木、水、火、土五种元素中任取两种的所有基本事件数,再计算其中两种元素恰是相生关系的基本事件数,利用古典概型概率公式,即得解【详解】由题意,从金、木、水、火、土五种元素中任取两种,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10个基本事件,其中两种元素恰是相生关系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5个基本事件,所以所求概率.故选:C6、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C7、B【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故选:B8、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D9、C【解析】根据不等式解集为,得方程的解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.10、D【解析】利用等差数列的前n项和公式得到,进而得到,利用裂项相消法求和.【详解】依题意得:,,,故选:D11、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.12、B【解析】由题意,“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,按照充分条件、必要条件的定义即可判断【详解】由题意,“不破楼兰终不还”即“不破楼兰”是“不还”的充分条件,即“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,比如战死沙场;即如果已知“还”,一定是已经“破楼兰”,所以“还”是“破楼兰”的充分条件故选:B二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】由题设可得,结合等比数列的定义知从第二项开始是公比为2的等比数列,进而写出的通项公式,即可求使成立的最小值n.【详解】因为,所以,两式相除得,整理得.因为,故从第二项开始是等比数列,且公比为2,因为,则,所以,则,由得:,故故答案为:11.14、【解析】求出的斜率,结合图形可得结论【详解】,,而,因此,故答案为:15、##【解析】根据向量数量积的计算公式即可计算.【详解】,,.故答案为:﹒16、【解析】利用基本量结合已知列方程组求解即可.【详解】设等差数列的公差为由题可知即因为,所以解得:所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2),.【解析】(1)根据的关系可得,根据等比数列的定义写出的通项公式,进而可得的通项公式;(2)利用的关系求的通项公式,结合(1)结论可得,再应用分组求和、错位相消法求的前n项和【小问1详解】.①当时,,可得当时,.②①-②得,则,而a1-1=1不为零,故是首项为1,公比为2的等比数列,则∴数列的通项公式为,【小问2详解】∵,∴当时,,当时,,又也适合上式,∴,∴,令,,则,又,∴18、【解析】设圆心坐标为,根据两点在圆上利用两点的距离公式建立关于的方程,解出值.从而求出圆的圆心和半径,可得圆的方程【详解】解:∵圆心在直线,∴设圆心坐标为,根据点和在圆上,可得解之得.∴圆心坐标为,半径.因此,此圆的标准方程是19、(1);(2)最大值为,最小值为.【解析】(1)求导,结合导数的几何意义列方程组,即可得解;(2)求导,确定函数的单调性和极值,再和端点值比较即可得解.【详解】(1)由题意,,因为曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,所以,,又当时,y=f(x)有极值,所以,所以;(2)由(1)得,,所以当时,,函数单调递增;当时,,函数单调递减;又,,,,所以在[-3,1]上的最大值为,最小值为.20、(1);(2)30.【解析】(1)设出等差数列的公差,由已知列式求得公差,进一步求出首项,代入等差数列的通项公式求数列的通项公式;(2)利用等差数列求和公式求和,再利用二次函数求得最值即可.【详解】解:(1)由题意得,数列公差为,则解得:,∴(2)由(1)可得,∴∵,∴当或时,取得最大值【点睛】本题考查利用基本量求解等差数列的通项公式,以及前n项和及最值,属基础题21、(1);(2)或.【解析】(1)根据圆的弦长公式进行求解即可;(2)根据平行线的性质,结合直线与圆的位置关系进行求解即可.小问1详解】因为圆的圆心在轴正半轴上、半径为2,所以设方程为:,圆心,设圆心到直线的距离为,因为,所以有,或舍去,所以圆的标准方程为;【小问2详解】由(1)可知:,圆的半径为,因为直线,所以设直线的方程为,因为圆上仅有一个点到直线的距离为1,所以直线与该圆相离,当两平行线间的距离为,于是有:,当时,圆心到直线的距离为:,符合题意;当时,圆心到直线的距离为::,不符合题意,此时直线的方程为.当两平行线间的距离为,于是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论