2025届江苏省南大附中高三数学第一学期期末联考模拟试题含解析_第1页
2025届江苏省南大附中高三数学第一学期期末联考模拟试题含解析_第2页
2025届江苏省南大附中高三数学第一学期期末联考模拟试题含解析_第3页
2025届江苏省南大附中高三数学第一学期期末联考模拟试题含解析_第4页
2025届江苏省南大附中高三数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南大附中高三数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.2.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.3.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.64.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.5.函数的部分图象大致是()A. B.C. D.6.已知(),i为虚数单位,则()A. B.3 C.1 D.57.若,则“”的一个充分不必要条件是A. B.C.且 D.或8.复数的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A. B. C. D.10.函数的图象的大致形状是()A. B. C. D.11.已知集合,集合,那么等于()A. B. C. D.12.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________.14.已知集合,则_______.15.已知平行于轴的直线与双曲线:的两条渐近线分别交于,两点,为坐标原点,若为等边三角形,则双曲线的离心率为______.16.甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.18.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.19.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.20.(12分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.21.(12分)已知等差数列的前n项和为,,公差,、、成等比数列,数列满足.(1)求数列,的通项公式;(2)已知,求数列的前n项和.22.(10分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.879

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.2、B【解析】

首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.3、B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).4、B【解析】

由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.5、C【解析】

判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,,时,,排除,当时,,时,,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.6、C【解析】

利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.7、C【解析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.8、C【解析】所对应的点为(-1,-2)位于第三象限.【考点定位】本题只考查了复平面的概念,属于简单题.9、D【解析】

求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.10、B【解析】

根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.【详解】函数易知为奇函数,故排除D.又,易知当时,;又当时,,故在上单调递增,所以,综上,时,,即单调递增.又为奇函数,所以在上单调递增,故排除A,C.故选:B【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.11、A【解析】

求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.12、C【解析】

根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】设,则,,,,当且仅当,即时,等号成立.,故答案为414、【解析】

由可得集合是奇数集,由此可以得出结果.【详解】解:因为所以集合中的元素为奇数,所以.【点睛】本题考查了集合的交集,解析出集合B中元素的性质是本题解题的关键.15、2【解析】

根据为等边三角形建立的关系式,从而可求离心率.【详解】据题设分析知,,所以,得,所以双曲线的离心率.【点睛】本题主要考查双曲线的离心率的求解,根据条件建立之间的关系式是求解的关键,侧重考查数学运算的核心素养.16、【解析】

根据条件概率的求法,分别求得,再代入条件概率公式求解.【详解】根据题意得所以故答案为:【点睛】本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据,得到函数,然后,直接求解的值;(2)首先,化简函数,然后,结合周期公式,得到,再结合,及正弦函数的性质解答即可.【详解】(1)因为,所以(2)因为即因为,所以所以因为所以所以当时,.当时,(最大值)当时,在是增函数,在是减函数.的值域是.【点睛】本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题.18、(1);(2)或.【解析】

(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,,直线,点F到直线l的距离为,,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,,,设,,,,线段AB的中垂线交直线l于点Q,所以横坐标为3,,,,平方整理得,解得或(舍去),,所求的直线方程为或.【点睛】本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.19、(1).x2+y2=1.(2)16【解析】

(1)直接利用极坐标方程和参数方程公式化简得到答案.(2)圆心到直线的距离为,故弦长为得到答案.【详解】(1),即,即,即.,故.(2)圆心到直线的距离为,故弦长为.【点睛】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.20、(1)见解析;(2).【解析】

(1)利用中位线的性质得出,然后利用线面平行的判定定理可证明出平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,利用空间向量法可求得直线与平面所成角的正弦值.【详解】(1)因为、分别为、的中点,所以.又因为平面,平面,所以平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,则,,,,,,,.设平面的法向量为,则,即,令,则,,所以.设直线与平面所成角为,所以.因此,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成的角,考查推理能力与计算能力,属于中等题.21、(1),();(2).【解析】

(1)根据是等差数列,,、、成等比数列,列两个方程即可求出,从而求得,代入化简即可求得;(2)化简后求和为裂项相消求和,分组求和即可,注意讨论公比是否为1.【详解】(1)由题意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①当时,.②当时,.【点睛】此题等差数列的通项公式的求解,裂项相消求和等知识点,考查了化归和转化思想,属于一般性题目.22、(1)列联表见解析,有;(2)分布列见解析,.【解析】

(1)根据题意,结合已知数据即可填写列联表,计算出的观测值,即可进行判断;(2)先计算出时间在和选取的人数,再求出的可取值,根据古典概型的概率计算公式求得分布列,结合分布列即可求得数学期望.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论