




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市十校2025届高一上数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),与死亡年数之间的函数关系式为(其中为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的,则可推断该文物属于()参考数据:参考时间轴:A.宋 B.唐C.汉 D.战国2.若,都为正实数,,则的最大值是()A. B.C. D.3.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③4.已知函数满足,则()A. B.C. D.5.已知向量,,若,则()A. B.C.2 D.36.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.7.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.8.函数的部分图象如图所示,则A.B.C.D.9.若,是第二象限角,则()A. B.3C.5 D.10.命题“,是4的倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4的倍数 D.,不是4的倍数二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,关于方程有四个不同的实数解,则的取值范围为__________12.已知函数是定义在的奇函数,则实数b的值为_________;若函数,如果对于,,使得,则实数a的取值范围是__________13.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,数学家纳皮尔在研究天文学的过程中,为简化计算发明了对数.直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系,即.现在已知,则__________14.已知关于的不等式的解集为,其中,则的最小值是___________.15.若“”是真命题,则实数的最小值为_____________.16.在中,,BC边上的高等于,则______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.18.已知,函数(1)求的定义域;(2)当时,求不等式的解集19.已知函数的图象时两条相邻对称轴之间的距离为,将的图象向右平移个单位后,所得函数的图象关于y轴对称.(1)求函数的解析式;(2)若,求值.20.已知集合,(1)当时,求;(2)若,求的取值范围21.已知函数f(x)=2sin(2x+)(x∈R)(1)求f(x)的最小正周期:(2)求不等式成立的x的取值集合.(3)求x∈的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据给定条件可得函数关系,取即可计算得解.【详解】依题意,当时,,而与死亡年数之间的函数关系式为,则有,解得,于是得,当时,,于是得:,解得,由得,对应朝代为战国,所以可推断该文物属于战国.故选:D2、D【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D3、B【解析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.4、B【解析】根据二次函数的对称轴、开口方向确定正确选项.【详解】依题意可知,二次函数的开口向下,对称轴,,在上递减,所以,即.故选:B5、A【解析】先计算的坐标,再利用可得,即可求解.【详解】,因为,所以,解得:,故选:A6、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.7、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.8、A【解析】由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图象与性质【名师点睛】根据图象求解析式问题的一般方法是:先根据函数图象的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值9、C【解析】由题知,再根据诱导公式与半角公式计算即可得答案.【详解】解:因为,是第二象限角,所以,所以.故选:C10、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.12、①.0②.【解析】由,可得,设在的值域为,在上的值域为,根据题意转化为,根据函数的单调性求得函数和的值域,结合集合的运算,列出不等式组,即可求解.【详解】由函数是定义在的奇函数,可得,即,经检验,b=0成立,设在值域为,在上的值域为,对于,,使得,等价于,又由为奇函数,可得,当时,,,所以在的值域为,因为在上单调递增,在上单调递减,可得的最小值为,最大值为,所以函数的值域为,则,解得,即实数的取值范围为.故答案为:;.13、3【解析】由将对数转化为指数14、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:15、1【解析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.16、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)对称轴为:,增区间为:;(3).【解析】(1)根据题意求出A,函数的周期,进而求出,再代入特殊点的坐标求得解析式;(2)结合函数的图象即可求出函数的对称轴,然后结合正弦函数的单调性求出的增区间;(3)根据题意先求出的解析式,进而作出函数的图象,然后通过数形结合求得答案.【小问1详解】由题意A=1,,则,所以,又因为图象过点,所以,而,则,于是.【小问2详解】结合图象可知,函数的对称轴为:,令,即函数增区间为:.【小问3详解】的图象向右平移个单位长度得到:,于是,如图所示:因为在上有两个解,所以.18、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为19、(1)(2)【解析】(1)根据两条相邻对称轴之间的距离可求得函数的周期,进而求得,根据平移之后函数图象关于轴对称,可得值,从而可得函数解析式;(2)将所求角用已知角来表示即可求得结果【小问1详解】由题意可知,,即,所以,,将的图象向右平移个单位得,因为的图象关于轴对称,所以,,所以,,因为,所以,所以;【小问2详解】,所以,,,所以20、(1);(2).【解析】(1)当时,可求出集合,再求出集合,取交集即可得到答案.(2)根据,可得,分别求出集合和集合,集合是集合的子集,即可得到答案.【小问1详解】当时,集合,,即集合,,故.【小问2详解】,集合,集合,.21、(1)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木材防腐与防虫处理技术考核试卷
- 矿产资源调查与评价方法-石墨滑石考核试卷
- 生物质成型燃料的燃烧污染物排放与控制考核试卷
- 秋风初一语文作文
- 静下心来初三语文作文
- 真空设备在化工领域的应用考核试卷
- 机械式停车设备维护保养技巧考核试卷
- 玻璃制品疲劳寿命评估考核试卷
- 粉末冶金在汽车尾气净化领域的应用考核试卷
- 电子电路的智能电网应用考核试卷
- 银行等安全保卫现场检查要点清单
- 活动场地租赁与活动安全责任协议
- 《数据统计与分析》课件
- 2024年河南职业技术学院单招职业适应性考试题库必考题
- (二模)新疆维吾尔自治区2025年普通高考第二次适应性检测 英语试卷(含答案详解)
- 征信系统AI应用行业深度调研及发展战略咨询报告
- 书法艺术疗愈在书法教育中的实践与应用研究
- 射频电路封装设计与工艺实现方法研究
- 2025年中国航天日知识竞赛考试题库300题(含答案)
- 物业项目经理考题及答案
- T-JSQX 0016-2024 无人驾驶配送装备通.用技术要求
评论
0/150
提交评论