2025届青海省西宁市海湖中学数学高二上期末综合测试模拟试题含解析_第1页
2025届青海省西宁市海湖中学数学高二上期末综合测试模拟试题含解析_第2页
2025届青海省西宁市海湖中学数学高二上期末综合测试模拟试题含解析_第3页
2025届青海省西宁市海湖中学数学高二上期末综合测试模拟试题含解析_第4页
2025届青海省西宁市海湖中学数学高二上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届青海省西宁市海湖中学数学高二上期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④2.抛物线的焦点坐标是A. B.C. D.3.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.44.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.5.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值6.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.7.已知命题,,若是一个充分不必要条件,则的取值范围是()A. B.C. D.8.已知抛物线上的点到其准线的距离为,则()A. B.C. D.9.设函数,则下列函数中为奇函数的是()A. B.C. D.10.在等差数列中,,则等于A.2 B.18C.4 D.911.已知为定义在R上的偶函数函数,且在单调递减.若关于的不等式在上恒成立,则实数m的取值范围是()A. B.C. D.12.直线与直线的位置关系是()A.相交但不垂直 B.平行C.重合 D.垂直二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线相互平行,则实数___________.14.某部门计划对某路段进行限速,为调查限速60km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按,,,分组,绘制成如图所示频率分布直方图.则________;这300辆汽车中车速低于限速60km/h的汽车有______辆.15.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.16.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,是椭圆:的左、右焦点,离心率为,点A在椭圆C上,且的周长为.(1)求椭圆C的方程;(2)若B为椭圆C上顶点,过的直线与椭圆C交于两个不同点P、Q,直线BP与x轴交于点M,直线BQ与x轴交于点N,判断是否为定值.若是,求出定值,若不是,请说明理由.18.(12分)已知椭圆的离心率为,短轴端点到焦点的距离为2(1)求椭圆的方程;(2)设为椭圆上任意两点,为坐标原点,且以为直径的圆经过原点,求证:原点到直线的距离为定值,并求出该定值19.(12分)已知函数,.(1)若,求曲线在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围.20.(12分)已知某中学高二物化生组合学生的数学与物理的水平测试成绩抽样统计如下表:若抽取了名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设,分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有(人),数学成绩为B等级且物理成绩为C等级的共有8人,已知与均为A等级的概率是0.07(1)设在该样本中,数学成绩的优秀率是30%,求,的值;(2)已知,,求数学成绩为A等级的人数比C等级的人数多的概率21.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..22.(10分)在△ABC中,角A,B,C所对的边分别a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,设D为CB延长线上一点,且AD⊥AC,求线段BD的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B2、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.3、B【解析】将已知条件转化为的形式,由此求得.【详解】在等差数列中,设公差为d,由,,得,解得.故选:B4、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.5、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A6、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A7、A【解析】先化简命题p,q,再根据是的一个充分不必要条件,由q求解.【详解】因为命题,或,又是的一个充分不必要条件,所以,解得,所以的取值范围是,故选:A8、C【解析】首先根据抛物线的标准方程的形式,确定的值,再根据焦半径公式求解.【详解】,,因为点到的准线的距离为,所以,得故选:C9、A【解析】求出函数图象的对称中心,结合函数图象平移变换可得结果.【详解】因为,所以,,所以,函数图象的对称中心为,将函数的图象向右平移个单位,再将所得图象向下平移个单位长度,可得到奇函数的图象,即函数为奇函数.故选:A10、D【解析】利用等差数列性质得到,,计算得到答案.详解】等差数列中,故选D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.11、C【解析】由条件利用函数的奇偶性和单调性,可得对恒成立,转化为且对恒成立.求得相应的最大值和最小值,从而求得的范围【详解】定义在上的函数为偶函数,且在上递减,在上单调递增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,则,,,,在上递增,上递减,令,当时,,在上递减,故可知,解得,所以实数m的取值范围是故选:C12、C【解析】把直线化简后即可判断.【详解】直线可化为,所以直线与直线的位置关系是重合.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:14、①.②.【解析】根据个小矩形面积之和为1即可求出的值;根据频率分布直方图可以求出车速低于限速60km/h的频率,从而可求出汽车有多少辆【详解】由解得:这300辆汽车中车速低于限速60km/h的汽车有故答案为:;15、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:16、##2.25##【解析】求出直线的方程,与抛物线方程联立后得到两根之和,结合焦点弦弦长公式求出,用点到直线距离公式求高,进而求出三角形面积.【详解】易知抛物线中,焦点,直线的斜率,故直线的方程为,代人抛物线方程,整理得.设,则,由抛物线的定义可得弦长,原点到直线的距离,所以面积.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用椭圆的定义可得,而离心率,解方程组,即可得解;(2)设直线的方程为,将其与椭圆的方程联立,由,,三点的坐标写出直线,的方程,进而知点,的坐标,再结合韦达定理,进行化简,即可得解【小问1详解】解:因为的周长为,所以,即,又离心率,所以,,所以,故椭圆的方程为【小问2详解】解:由题意知,直线的斜率一定不可能为0,设其方程为,,,,,联立,得,所以,,因为点为,所以直线的方程为,所以点,,直线的方程为,所以点,,所以,即为定值18、(1)(2)证明见解析,定值为【解析】(1)根据题意得到,,得到椭圆方程.(2)考虑直线斜率存在和不存在两种情况,联立方程,根据韦达定理得到根与系数的关系,将题目转化为,化简得到,代入计算得到答案.【小问1详解】椭圆的离心率为,短轴端点到焦点的距离为,故,,故椭圆方程为.【小问2详解】当直线斜率存在时,设直线方程为,,,则,即,,以为直径的圆经过原点,故,即,即,化简整理得到:,原点到直线的距离为.当直线斜率不存在时,为等腰直角三角形,设,则,解得,即直线方程为,到原点的距离为.综上所述:原点到直线的距离为定值.【点睛】本题考查了椭圆方程,椭圆中的定值问题,意在考查学生的计算能力,转化能力和综合应用能力,其中将圆过原点转化为是解题的关键.19、(1).(2).【解析】分析:(1)由和可由点斜式得切线方程;(2)由函数在上是减函数,可得在上恒成立,,由二次函数的性质可得解.详解:(1)当时,所以,所以曲线在点处的切线方程为.(2)因为函数在上是减函数,所以在上恒成立.做法一:令,有,得故.实数的取值范围为做法二:即在上恒成立,则在上恒成立,令,显然在上单调递减,则,得实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).20、(1),(2)【解析】(1)根据与均为A等级的概率是0.07,求得值,再根据数学成绩的优秀率是30%求得值,最后利用抽取的总人数求出值即可;(2)根据,,,写出满足条件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小问1详解】由题意知,解得,,解得,由已知得,解得.【小问2详解】由,,,可知,则试验的样本空间,共9个样本点其中包含的样本点有共4个,故所求概率21、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论