版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UnlockingNewOpportunities
forCarbonNeutralityinChina’sBuildingSector
ExecutiveSummary
ES/September2024
hRMl
AboutRMI
RMIisanindependentnonprofit,foundedin1982asRockyMountainInstitute,thattransformsglobal
energysystemsthroughmarket-drivensolutionstoalignwitha1.5°Cfutureandsecureaclean,
prosperous,zero-carbonfutureforall.Weworkintheworld’smostcriticalgeographiesandengage
businesses,policymakers,communities,andNGOstoidentifyandscaleenergysysteminterventionsthatwillcutclimatepollutionatleast50percentby2030.RMIhasofficesinBasaltandBoulder,Colorado;NewYorkCity;Oakland,California;Washington,D.C.;Abuja,Nigeria;andBeijing,People’sRepublicofChina.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/2
AuthorsandAcknowledgments
Authors
TingLiWeiLi
DengfengLiaoGuangxuWangMengWang
OtherContributors
YihanHao
Authorslistedalphabetically.AllauthorsfromRMIunlessotherwisenoted.
Contacts
WeiLi,wli@
MengWang,mwang@
CopyrightsandCitation
WeiLi,MengWang,andGuangxuWang,UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector,RMI,2024,
/insight/unlocking-new-opportunities-for-carbon
-
neutrality-in-chinas-building-sector/
RMIvaluescollaborationandaimstoacceleratetheenergytransitionthroughsharingknowledgeand
insights.Wethereforeallowinterestedpartiestoreference,share,andciteourworkthroughtheCreativeCommonsCCBY-SA4.0license.
/licenses/by-sa/4.0/
.
AllimagesusedarefromiSunlessotherwisenoted.
Acknowledgement
Wewouldliketoexpresssincerethankstothefollowingexpertsfortheirinsightandcomments:
CongxiaoLi,DeputyDirector,DualCarbonLeadershipOffice,ChinaStateConstructionGroupBorongLin,ProfessorandViceDean,SchoolofArchitecture,TsinghuaUniversity
BinHao,DeputyChiefEngineer,ShenzhenAcademyofBuildingResearch
HaixiaShi,DeputySecretaryGeneral,ChinaConcreteandCementProductsAssociation
SpecialthankstotheQuadratureClimateFoundation’ssupportofthisreport.
Thecontentincludedinthisreportdoesnotrepresenttheviewsoftheaboveexperts,theirinstitutions,andprojectsupporters.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/3
TowardaSystematicandEquitableEnergyTransition:The
BuildingSectorasaPillarofChina’sCarbonNeutralityGoals
SinceChinaproposedits“dualcarbon”goalsin2020,whichaimtopeakcarbonemissionsby2030and
achievecarbonneutralityby2060,thebuildingsectorhasbeenaprimaryfocusarea.Thesector’stotalCO2emissionsreached3.7billiontonsin2022,accountingfor32%ofthenation’stotal.iOfthis,about2.2billiontonswereemittedduringbuildingoperations,whereas1.5billiontonswereemittedduringtheproduction
andtransportationofbuildingmaterialsandduringconstruction,whicharereferredtoasembodied
carbon(seeExhibit1).Since2014,totalCO2emissionsfromChina’sbuildingsectorhaveplateaued(seeExhibit2).However,aslivingstandardsimprove,Chinastillhasroomforgrowthinbuildingfloorareaand
residentialenergyconsumptiononapercapitabasis.Therefore,anurgenttaskistodecouplethisgrowthfrombuildingemissions.
Exhibit1CO2emissionsbreakdownfromChina’sbuildingsectorin2022
RMIGraphic.Source:InternationalEnergyAgency(IEA),
/reports/co2-emissions-in-2023/
;BuildingEnergyResearchCenterTsinghuaUniversity,AnnualReportonBuildingEnergyEfficiencyDevelopmentinChina2024;BuildingEnergyResearchCenterTsinghuaUniversity,ChinaAssociationofBuildingEnergyEfficiency,2023ChinaBuildingandUrbanInfrastructureCarbonEmissionsReport
iIn2022,China’snationalCO2emissionstotaled11.48billiontons,accordingtodatafromtheInternationalEnergyAgency(IEA)
/reports/co2-emissions-in-2023/
.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/4
Exhibit2CO2emissionsfromChina’sbuildingsectorfrom2010to2022
RMIGraphic.Source:BuildingEnergyResearchCenterTsinghuaUniversity,AnnualReportonBuildingEnergyEfficiencyDevelopmentinChina2024
Becausebuildingsdemandsignificantenergy,anet-zerobuildingsectoriscriticaltoChina’senergy
transition.Ononehand,buildingsaccountfor21%oftotalfinalenergyconsumptionandaquarterof
electricityconsumptioninChina.Moreover,thebuildingsector’selectrificationratehasreached44.9%,thehighestamongenergy-usingsectors.Thismeansbuildingscanserveasanimportantflexibleresourceinthenewenergysystem.Ontheotherhand,buildingsarethebiggestuserofindustrialrawmaterials,
accountingfor37%oftotalsteelconsumptionand55%oftotalcementconsumptioninChina.Reducingembodiedcarboninthebuildingsectorwillleadtoemissionsreductionsinupstreamindustrialsectorsandnurtureamarketforlow-carbonproducts.
Anet-zerobuildingsectorisalsocriticaltopeople’squalityoflifeandanequitableenergytransition.Decarbonizationmeasuresinthissectorcanbringmoreefficient,smarter,andhealthierliving
environmentstoabroaderpopulation.Chinaalreadyhasalargeaffordablehousingprogram,thelargeststockofexistingbuildingsofanycountryintheworld,andasignificantnumberofruralbuildings,totalingnearly35billionsquaremeters(m2)andhousingapproximately750millionpeople.Implementingcarbon-neutraltechnologiesinthesebuildingswillimproveenergyaccessandqualityoflifeforvulnerable
populationsandpromotesocialequity.
Thenext5–10yearswillbecriticalforguidingChina’sbuildingsectortowardcarbonneutrality.The
buildingsectormustrealizehigh-qualitycarbonpeakingandcontrolandstabilizeitscurrentemissionsplateauevenasmorebuildingsarebuilt.Atthesametime,itisnecessarytolaythefoundationforanet-zerobuildingsectorbypromotingtheapplicationandintegrationofcarbon-neutraltechnologiesassoonaspossibleandsolvingkeyissuesrelatedtothesupplychain,cost,andmarketacceptance.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/5
DecarbonizingBuildingOperations:EnergyFlexibilityandZero-CarbonHeating
Buildingoperationsaccountforapproximately59%ofthelife-cycleCO2emissionsofbuildingsinChina.
Theseemissionscomefromtwomainsources:directemissionsfromburningfossilfuelsforheating,
hotwater,andcooking,andindirectemissionsfromelectricityuseanddistrictheating.In2022,China’sbuildingsconsumed34.25exajoules(EJ),accountingfor21%ofthecountry’stotalenergyconsumption
and19.1%ofChina’stotalCO2emissions.
Withcontinuedeconomicdevelopmentandimprovinglivingstandards,thedemandforbuildingenergyisexpectedtocontinuetorise.Electricityconsumptioninbuildingshasbeenincreasingrapidly,withthe2021levelbeingnearly2.5timesthe2010level(seeExhibit3).Meanwhile,theshareofbuildingelectricityloadduringpeakdemandhasbeenincreasing,withair-conditioningloadsaccountingfor40%to50%
ofthepeakelectricitydemandincertainprovinces,includingZhejiang,Hubei,andSichuan.Althoughbuildingfossilenergyconsumptionhaspeaked,iidirectfossilfueluseinurbanresidentialbuildingsanddistrictheatingcontinuestogrow.
Exhibit3Buildingelectricityandfossilenergyconsumptionduringtheoperationalphase
RMIGraphic.Source:ChinaAssociationofBuildingEnergyEfficiency,ChinaBuildingEnergyandEmissionsDatabase,
/#/database
ii"Buildingfossilenergyconsumption"doesnotincludethefossilenergyconsumptionassociatedwithelectricityusedinbuildings.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/6
ChallengestoDecarbonizingBuildingOperations
Theincreasingelectricityconsumptionandpeakloadsofbuildingsareputtingpressureonthepowersystemsupplyandpeakshaving,butbuildings’potentialasflexibleresourceshasnotyetbeenfully
tapped.Mostbuildingshavelimitedflexibilitytomanagetheirenergydemandandgeneration.Duringpeakdemandperiods,powergenerationstillresortstofossilfuels,delayingthedecarbonizationofthepowersystem.Thisalsoaffectsindustrialactivities,leadingtocertaineconomiclosses.
Theheavyrelianceonfossilfuel–basedheatingpresentsadecarbonizationchallengeduetothehigh
costofreplacingexistingsystems.Northerndistrictheatingreliesoncoal/gascombinedheatandpower(CHP)plantsandboilers.Thankstoitswell-establishedinfrastructureandcostefficiency,districtheatinglackseconomicallyviableandtechnicallymatureheatsourcereplacementsolutions.Insouthernregionswithhotsummersandcoldwinters,demandforhomeheatinghasbeenincreasingduetorisingliving
standards.ManyresidentsinregionssuchastheYangtzeRiverDeltausegasboilersforheating.Withoutadditionaleconomicincentivestoreplaceexistingheatingequipment,thescaleupoflow-carbonheatingalternativessuchasheatpumpswillcontinuetobedelayedbecauseoftheso-calledlock-ineffect.
DevelopingBuildingsasFlexibleResourcesintheNewPowerSystem
Thenewpowersystemrequiresmoreflexibilitytoensurefunctioninggridswithahighshareofrenewableenergy.Giventhelimitedavailabilityofflexibleresourcesonthegenerationside,thedevelopmentof
flexibleresourcesonthedemandside,especiallyinbuildings,hasbecomeanimperative.Buildingloadsofferhighflexibility,economicefficiency,andamplespacefordistributedenergyresources.Enhancing
buildingenergyflexibilityinvolvesimprovingefficiency,distributedgeneration,andshiftingload.Effectivecombinationofthesemeasureswithsmartcontrolcansignificantlyboostbuildingenergyflexibility
(seeExhibit4).Improvingbuildingenergyflexibilityhassignificantpotentialforcarbonreductionand
economicbenefitsinChina.RMIestimatesthatfullyharnessingthepotentialofbuildingloads'flexibilitycouldreducepeakgridloadbyatleast10%nationwide.ThiswouldhelpChinaavoidapproximately500billionyuaninadditionalinvestmentinpowersysteminfrastructureandachieveatleast200milliontonsofannualCO2reductions.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/7
Exhibit4Changesinbuildingelectricalloadresultingfromflexibilitytechnologies
PowerDemand
PowerDemand
PowerDemand
Efficiency+Generate+Shed/ShiftNetLoad
HouroftheDay
Efficiency
Efficiency+Generate
EfficiencyNetLoad
HouroftheDay
HouroftheDay
Shed/Shift
Generate
SolarPV
Baseline
MeasuresAdopted
BuildingEnvelopeEnhancement
HeatRecoveryTechnology
EquipmentEfficiencyImprovement
BuildingEnvelopeEnhancement
HeatRecoveryTechnology
EquipmentEfficiencyImprovement
DistributedPhotovoltaics(PV)
BuildingEnvelopeEnhancement
HeatRecoveryTechnology
EquipmentEfficiencyImprovement
DistributedPhotovoltaics(PV)
Energy/ThermalStorage
IncreasingDemandforSmartControl
RMIGraphic.Source:USDepartmentofEnergy,Grid-interactiveEfficientBuildingsTechnicalReportSeries,
https://www.energy
.gov/eere/buildings/articles/grid-interactive-efficient-buildings-technical-report-series-overview
UsingWasteHeat+HeatPumpstoAchieveZero-CarbonHeating
DecarbonizingdistrictheatinginnorthernChinaliesprimarilyintheuseofwasteheatresources.More
than200EJofusablewasteheatisavailablefromsourcessuchasCHPplants,nuclearpower,industrial
processes,datacenters,andwastewatertreatmentplants.Theheatingdemandforurbanbuildingsin
northernChinaisabout54EJ,andmostnorthernChinesecitiesalreadyhavewell-developeddistrict
heatingnetworks.Thedecarbonizationstrategyincludesreplacingcoal-firedboilerswithCHPintheshorttermandtransitioningtobiomassCHPandwasteheatrecoveryinthelongterm,aswellasdeploying
technologiessuchasseasonalthermalstorage,long-distanceheattransmission,andheatpumpstoachieveazero-carbontransition(seeExhibit5).
Heatpumpsofferthebestopportunityfordecarbonizingheatinginsouthernregionswithhotsummers
andcoldwinterswheredistrictheatinginfrastructureislackingduetotheshortwinterseasonand
intermittentheatingdemand.Thedemandforheatingintheseregionshasincreasedsignificantlyinrecentyears.By2030,morethan20millionresidentsintheYangtzeRiverDeltawillhavenewheatingsystems,
increasingheatingdemandbyabout40%comparedwith2020.Heatpumpsareidealfordeploymentin
theseregionsbecausetheyarehigh-efficiency,low-emissions,andcost-savingdualheating-and-coolingequipment.Inthenearterm(before2030),heatpumpsshouldbeusedinnewbuildings,whileinthelongterm,effortsshouldfocusonlow-carbonretrofitsofexistingbuildingsandtheeventualphaseoutofgasinresidentialheatingsystems.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/8
Exhibit5Zero-carbontransitionpathwaysfornortherndistrictheating
systemsandhotsummerandcoldwinterclimatezones
RMIGraphic.Source:RMIanalysis
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/9
TacklingEmbodiedCarbon:Low-CarbonProcurementandBio-BasedMaterials
EmbodiedCO2emissionsareanothercriticalfocusfordecarbonizingthebuildingsector,accounting
forapproximately41%ofabuilding’slife-cycleCO2emissions.In2022,totalembodiedCO2emissionsinChina’sbuildingsectorwereapproximately1.5billiontonsofCO₂,accountingfor13%ofthecountry’s
total.Structuralmaterialscontributemorethan60%oftheembodiedcarboninbuildingsandmorethan
12%ofthetotalCO2emissionsinthebuildingsector.
Optimizingdesignandstructuralsystemsiscriticaltoreducingembodiedcarbon.InChina,reinforced
concretestructuresarethemostcommonbuildingtype,accountingforover80%ofcivilbuildings'
structure,whilewoodandsteelstructuresarelesscommon,withsteelstructuresaccountingforonly
about5%ofbuildings(seeExhibit6).Amongallbuildingmaterials,steelandcementaccountfor36%and53%ofCO2emissions,respectively,makingthemthemostsignificantsourcesofembodiedcarbon(seeExhibit7).
Exhibit6ComparisonofbuildingstructuretypesinChinaandinothercountries
RMIGraphic.Source:DatafromChinaBuildingMaterialFederation
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/10
Exhibit7CO2emissionsfrommajorbuildingmaterialsindustriesin2020
RMIGraphic.Source:DatafromChinaBuildingMaterialsFederation
ChallengestoDecarbonizingEmbodiedCarboninBuildings
Thesteelandcementindustriesfacechallengesinreducingemissionsduetotechnologicalmaturity,cost,andlackofinvestment.Atthesametime,steelandcementremainthemostimportantbuildingmaterials.ThedominanceofreinforcedconcretestructuresinChinaislikelytocontinueduetofactorssuchashighbuildingandpopulationdensity,structuralrequirements,technicalmaturity,fireresistance,anddurabilityrequirements.Thispresentsthreechallengesthatneedtobeaddressedtoreduceembodiedcarbonin
buildings:improvingthedurabilityandextendingthelifeofexistingstructures,increasinginvestmentindecarbonizingindustrialsectorssuchassteelandcement,andpromotingtheuseoflow-carbonconcreteandsteelinconstruction.
Bio-basedmaterialssuchasbambooandwoodareunderdevelopedaszero-carbonbuildingmaterials.
Bambooandwoodoffernear-zeroemissionsaswellasfasterconstructiontimesthantraditionalbuildingmaterials.However,theirstrength,durability,andfireresistancestillneedtobeimprovedthroughmodernprocesses.Thereislimitedawarenessandacceptanceofbambooandwoodstructuresintheconstructionsector,andtheiruseisgenerallylimitedtosmallbuildings.Issuessuchasthelimitationsofmodern
bamboocomponentsinlarge-span,large-sectionbuildingsandconcernsabouttheirdurabilityandfireresistanceneedtobeaddressed.
ScalingUpLow-CarbonMaterialswithPublicandPrivateGreenProcurementPrograms
Greenpublicprocurementandprivateprocurementprogramsareimportantdriverstopromotethe
useoflow-carbonbuildingmaterialssuchaslow-carbonsteelandconcrete.In2024,China’snational
governmentlaunchedthethirdbatchofpilotcitiesinitsGreenBuildingMaterialPromotionProgram,
covering100citiesand100productcategories,anditlaunchedanothernationalprogramtoexpanduseofgreenbuildingmaterialsinruralareas.Leadingconstructionandrealestatecompaniesarejoiningforcestoformagreenprocurementalliancetosupportgreensupplychains.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/11
However,itisimportantforthesegreenprocurementschemestoincludeemissionsmetricsintheir
definitionsof“green.”ItisalsoimportanttodevelopCO2emissionsaccountingrulesandemissions
databasestoquantifylowcarboninprocurementpractices.ThisareaisbecomingincreasinglyurgentasChinaacceleratestheestablishmentofaproductCO2emissionsmanagementsystem,ascalledforinpolicyfromlate2023,andplanstoestablishaccountingrulesfor200keyproductsby2030.
Leveragingthebuildingindustrytopromotelow-carbonmaterialscanleadtohugecarbonreduction
potentialandnurtureamarketforfirstmoversoflow-carbonindustrialmaterials.RMIestimatesthat
China’sbuildingindustryconsumesapproximately350milliontonsofsteeland960milliontonsofcementannually.Considerlow-carbonconcrete:Iflow-carbonconcretewithsupplementarycementitious
materialsofnolessthan30%werewidelyusedingovernmentconstructionprojects,thecarbonintensityofconcretecouldbereducedby22.5%,resultinginanannualreductionof190milliontonsofCO₂
emissions.Inaddition,nationwidepromotionoflow-carbonconcretecouldpotentiallyreduceannualCO₂emissionsby590milliontonsby2035.
PromotingModernBambooandWoodStructurestoDiversifyApplications
Bambooandwoodstructureshavesignificantlylowerlife-cycleCO2emissionsandenvironmentalimpactsthansteelandconcretestructures.ModernwoodstructurescanreducematerialCO2emissionsby48.9%to94.7%andlife-cycleCO2emissionsby8.6%to13.7%comparedwithsimilarstructuresusingsteelandconcrete.Chinahaspublishednationalandindustrystandardsforengineeredwoodproducts,includingglulamandcross-laminatedtimbercomponentsuseddomesticallyandinternationallyinwoodstructures.
However,inChina,mostwoodbuildingsaresmalltouristbuildings,andthewoodstructurebuildingmarketislessthan20billionyuan.Bycontrast,theglobalwoodstructurebuildingmarketreached
150billionyuanin2022.ThisislargelyduetoChina’sunderdevelopedstandardsystemsforlarge-spanbuildingsandtheneedformoreinnovationsandtestingtoexpandmodernbio-basedstructures.
Inthefuture,bambooandwoodstructuresareexpectedtobecomemorepopularinnewruralhouses,culturalandtourismbuildings,commercialcomplexes,andhigh-endresidences.Theconstruction
offacilitiesinthefivemajornationalparksisexpectedtocreatesignificantopportunitiesforwood
structures,withanestimatednewconstructionfloorareaofabout4millionm2.Approximately760,000villagesand5millionruralhomesarebuiltorrebuilteachyearinChina.RMIestimatesthatif10%ofthenewruralhousesbuilteachyearweremodernwoodstructures,itwouldcreateamarketofabout150
billionyuanforwoodbuildingmaterial.Inaddition,usingwoodstructuresforthesehousescouldreduceembodiedcarbonbyapproximately18.24tonsperhouse,potentiallyavoiding4.56milliontonsofCO₂emissionsannuallyacrossthecountry.
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/12
DrivingaNewGrowthModel:TechnologyIntegrationandBusinessModelInnovation
Overthenextdecade,China’sbuildingindustrywillbedrivenbybothnewgreenbuildingsandlow-carbonretrofitsofexistingbuildingsaspartofitscarbonneutralitygoals.RMIestimatesthatnewconstruction
willgrowatarateof3%peryear,reachingapproximately1.38billionm2by2035.Allnewbuildingswill
meet100%greenbuildingstandards,85%ofwhichwillbeprefabricatedbuildingsand20%ofwhich
areexpectedtobeultra-low-energybuildings.Existingbuildings,especiallythosebuiltbefore2015,willrequireenergy-savingandlow-carbonrenovations,estimatedat1billionm2peryearby2035.Overall,the
totalfloorareaofnewandrenovatedbuildingsinChinawillreachnearly2.4billionm2annuallyby2035,withtheshareofexistingbuildingrenovationsincreasingto42%,highlightingthegrowingimportanceofretrofittinginthebuildingsector(seeExhibit8).
Exhibit8Buildingfloorareasunderconstructionperyear,newbuildingsandretrofits,2015–35
RMIGraphic.Source:RMIanalysis
ScalingandIntegratingDecarbonizationTechnologiesBecomesaNewGrowthDriver
Decarbonizingthebuildingsectorrequiresthewidespreaduseoflow-carbontechnologiesandproducts.RMIhasidentifiedeightkeytechnologycategoriestodecarbonizetheentirebuildingsector:building
materials,construction,passiveenergy-saving,equipmentenergy-saving,renewableandenergystorage,digitization,recycling,andcarbonsequestration.RMIanalysisshowsthatwithintheseeightcategories,
the76mostrepresentativebuildingtechnologieshaveanaveragetechnologyreadinesslevel(TRL)of4.8
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/13
sectorinChina
Exhibit9Maturityanalysisofcarbonreductiontechnologiesinthebuilding
Note:Thetechnologyreadinesslevels(TRLs)aresimplifiedbasedontheIEA’sclassificationforcleanenergytechnology
maturity,dividedintosixlevels:(1)concept,(2)smallscaleprototype,(3)largescaleprototype,(4)demonstration,(5)earlycommercialization,and(6)fullcommercialization.
RMIGraphic.Source:RMIanalysis
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/14
outof6(seeExhibit9).Morethanhalfofthesetechnologiesarealreadyincommercialuse,andover90%havereachedtheearlycommercializationlevelorhigher.Therefore,thestrategyfordecarbonizationtechnologydeploymentinthebuildingsectorshouldfocusbothonscalinguptechnologiesatcommercialscaleandonintegratingtechnologiesasasystem,whichwillrequirebothmarketpowerandpublicsupport.
Exhibit10Projectedmarketgrowthoffourkeylow-carbontechnologies,2023–35
RMIGraphic.Source:RMIanalysis
RMIalsoanalyzedthemarketpotentialforfourkeytechnologies:low-carbonbuildingmaterials,energy-efficientwindows,high-efficiencyairconditionersandheatpumps,andbuildingphotovoltaics(see
Exhibit10).Themainopportunitiesforscalinguplow-carbonsteelandconcreteremainincertification
andmarketschemes,suchaslargegreenprocurementprograms.Themarketforhigh-efficiencyair
conditionersandheatpumpswillbemainlydrivenbythetrade-inpolicythatreplacesoldequipmentwithnew,moreefficientequipment,asexplicitlymentionedinthe2024NationalMeasurestoPromoteLarge-ScaleEquipmentReplacementandTrade-inofConsumerGoods,aswellastheincreasingdemandfor
residentialheatinginsouthernChina.Buildingphotovoltaictechnologieswillbedrivenmainlybyprogressinnationwidephotovoltaicpoliciesandcontinuedcostreductionsinbuildingphotovoltaicproduction.
BusinessModelandInstitutionalInnovation:ValueChainIntegration,SmartManagement,Standardization,andBeyond
Thedevelopmentofnewbusinessmodelsandinstitutionalmechanismsiscriticalforthelarge-scale
deploymentoflow-carbonproductsandtechnologies.Valuechainintegration,smartmanagement,
andstandardizationacrossindustriesarekeytrendsthatarepowerfulenablersforreducingemissions
acrosstheentirebuildingindustryvaluechain.Valuechainintegrationinvolvesconnectingsupplychainplayersforconsistentactionandimplementinglife-cycledesignandmanagementapproaches.Smart
management,enhancedbydigitalizationandartificialintelligence,willsupportoptimalandreal-time
energymanagementandimproveprocessefficiency.Buildingstandardizationistheprovisionofmodularcomponentstoimproveconstructionefficiencyandreducewaste,aswellasproduct,design,andrating
UnlockingNewOpportunitiesforCarbonNeutralityinChina’sBuildingSector/15
systemstandardization.Inthecontextofcarbonneutrality,newbusinessmodelsforthebuildingsectorwillrequirethesynergisticactionofvariousactorsalongthevaluechain,includingbuildingmaterial
manufacturers,designers,constructioncompanies,developers,operationandmaintenanceserviceproviders,retrofitters,andbuildingwasterecyclers(seeExhibit11).
Exhibit11Stakeholderactionsinthebuildingindustryvaluechain
RMIGraphic
Atthesametime,innovativemarketmechanismscaneffectivelymobilizecorporateactionsbyleveragingcapitalandinvestment.Chinaisgraduallyexploringtheopeningupofthecarbontradingmarketinthebuildingindustry,internalizingthecostofCO2emissionsbytradingCO2emissionsrights,andprovidingincentivesforconstructionenterprisestoaccelerateemissionsreduction.Innovativegreenfinancing
systems,suchasgreencredit,greenbonds,greenfunds,greeninsuranc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度废木糠回收设备采购合同2篇
- 2024年度劳动合同样本及填写指南2篇
- 2024年度船舶租赁长期合同2篇
- 二手挖掘机买卖合同2024年范本3篇
- 2024年度二手车位买卖合同范本在线生成3篇
- 2024年度房产买卖合同(含装修)3篇
- 《功能高分子总论》课件
- 《小学英语教学设计》课件 第八章 小学英语教学评价设计
- 全新多方旅游景点开发与运营合同20243篇
- 《动物的生殖和发育》课件
- 西门子S7-1500 PLC技术及应用 课件 第2章 S7-1500 PLC的系统配置与开发环境
- 2024年中国瓦楞包装纸箱市场调查研究报告
- 苏教版数学六年级上册第四单元解决问题的策略大单元教学任务单
- 语文统编版(2024)一年级上册语文园地七 教案
- 安全培训合同范本3篇
- 2024年电工(高级技师)考前必刷必练题库500题(含真题、必会题)
- 江苏省南通市(2024年-2025年小学四年级语文)人教版能力评测(上学期)试卷及答案
- 读懂中国茶学习通超星期末考试答案章节答案2024年
- 供热管网维护合同范本
- 【核心素养目标】5.4.1细菌和真菌的分布教案 2023-2024学年人教版生物八年级上册
- 健身房会员服务优化预案
评论
0/150
提交评论