2024年北京八中学数学九上开学综合测试试题【含答案】_第1页
2024年北京八中学数学九上开学综合测试试题【含答案】_第2页
2024年北京八中学数学九上开学综合测试试题【含答案】_第3页
2024年北京八中学数学九上开学综合测试试题【含答案】_第4页
2024年北京八中学数学九上开学综合测试试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共4页2024年北京八中学数学九上开学综合测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知样本数据,,,,,,则下列说法不正确的是()A.平均数是 B.中位数是 C.众数是 D.方差是2、(4分)平行四边形两个内角的度数的比是1:2,则其中较小的内角是()A. B. C. D.3、(4分)下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.4、(4分)对于函数,下列结论正确的是()A.它的图象必经过点(-1,1) B.它的图象不经过第三象限C.当时, D.的值随值的增大而增大5、(4分)关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是106、(4分)有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57、(4分)下列运算正确的是()A.=2 B.=±2 C. D.8、(4分)方程x2-2x-5=0的左边配成一个完全平方后,所得的方程是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.10、(4分)化简:=______.11、(4分)已知关于x的方程的解是负数,则n的取值范围为.12、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________13、(4分)将直线y=2x-3向上平移5个单位可得______直线.三、解答题(本大题共5个小题,共48分)14、(12分)如图,一次函数y1=2x+2的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,4),求点A的坐标及反比例函数的表达式.15、(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.(1)取出白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?16、(8分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?17、(10分)如图,在平行四边形ABCD中,DE,BF分别是∠ADC,∠ABC的角平分线.求证:四边形DEBF是平行四边形.18、(10分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.(1)点的坐标为.(2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;(3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若是关于的方程的一个根,则方程的另一个根是_________.20、(4分)如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是_____.21、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____22、(4分)y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.23、(4分)如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________二、解答题(本大题共3个小题,共30分)24、(8分)已知一次函数.(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?25、(10分)因式分解:26、(12分)已知在中,是的中点,,垂足为,交于点,且.(1)求的度数;(2)若,,求的长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数.【详解】在已知样本数据1,1,4,3,5中,平均数是3;

根据中位数的定义,中位数是3,众数是3方差=1.所以D不正确.

故选:D.本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.2、C【解析】

根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,故该平行四边形的四个角的比值为1:2:1:2,所以可以计算出平行四边形的各个角的度数.【详解】根据平行四边形的相邻的两个内角互补知,设较小的内角的度数为x,则有:x+2x=180°∴x=60°,即较小的内角是60°故选C.此题考查平行四边形的性质,解题关键在于设较小的内角的度数为x3、C【解析】试题分析:A.是轴对称图形,不是中心对称图形.故错误;B.是轴对称图形,不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.考点:1.中心对称图形;2.轴对称图形.4、B【解析】

将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.【详解】A、令y=-3x+4中x=-1,则y=8,∴该函数的图象不经过点(-1,1),即A错误;B、∵在y=-3x+4中k=-3<0,b=4>0,∴该函数图象经过第一、二、四象限,即B正确;C、令y=-3x+4中y=0,则-3x+4=0,解得:x=,∴该函数的图象与x轴的交点坐标为(,0),∴当x<时,y>0,故C错误;D、∵在y=-3x+4中k=-3<0,∴y的值随x的值的增大而减小,即D不正确.故选:B.本题考查了一次函数的性质以及一次函数图象与系数的关系,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.5、A【解析】

根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.6、A【解析】这20个数的平均数是:,故选A.7、A【解析】

根据,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变进行计算即可.【详解】解:A、,故原题计算正确B、,故原题计算错误C、和不是同类二次根式,不能合并,故原题计算错误D、,故原题计算错误故选:A本题考查了二次根式的化简,以及简单的加减运算,认真计算是解题的关键.8、B【解析】

把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.【详解】解:把方程x2-2x-5=0的常数项移到等号的右边,得到x2-2x=5,

方程两边同时加上一次项系数一半的平方,得到x2-2x+(-1)2=5+(-1)2,

配方得(x-1)2=1.

故选:B.本题考查配方法解一元二次方程.配方法的一般步骤:

(1)把常数项移到等号的右边;

(2)把二次项的系数化为1;

(3)等式两边同时加上一次项系数一半的平方.

选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】

根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.【详解】解:根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案为:.本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.10、a+1【解析】

先根据同分母分式加减法进行计算,再约分化简分式即可.【详解】.故答案为a+1本题考核知识点:分式的加减.解题关键点:熟记分式的加减法则,分式的约分.11、n<1且【解析】

分析:解方程得:x=n﹣1,∵关于x的方程的解是负数,∴n﹣1<0,解得:n<1.又∵原方程有意义的条件为:,∴,即.∴n的取值范围为n<1且.12、-1【解析】试题解析:∵根据正比例函数的定义,可得:k-1≠0,|k|=1,∴k=-1.13、y=1x+1【解析】

根据平移前后两直线解析式中k值相等,b的值上加下减即可得出结论.【详解】解:原直线的k=1,b=-3;向上平移5个单位长度,得到了新直线,那么新直线的k=1,b=-3+5=1.∴新直线的解析式为y=1x+1.故答案是:y=1x+1.此题考查的是求直线平移后的解析式,掌握直线的平移规律是解决此题的关键.三、解答题(本大题共5个小题,共48分)14、A的坐标是(1,4),y2=.【解析】

把y=4代入y1=2x+2可求得A的横坐标,则A的坐标即可确定,再利用待定系数法求得反比例函数的解析式.【详解】把y=4代入y=2x+2,得2x+2=4,解得:x=1,则A的坐标是(1,4).把(1,4)代入y2=得:k=1×4=4,则反比例函数的解析式是:y2=.本题考查了反比例函数与一次函数的交点问题,解题的关键是熟知待定系数法的运用.15、(1)(2)袋中的红球有6只.【解析】

(1)根据取出白球的概率是1-取出红球的概率即可求出;(2)设有红球x个,则总求出为(x+18)个,再根据红球的概率即可列出方程,从而解出x.【详解】解:(1)=(2)设袋中的红球有只,则有解得所以,袋中的红球有6只.16、(1)每天可销售450件商品,商场获得的日盈利是6750元;(2)每件商品售价为60或1元时,商场日盈利达到100元.【解析】

(1)首先求出每天可销售商品数量,然后可求出日盈利;(2)设商场日盈利达到100元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.【详解】(1)当每件商品售价为55元时,比每件商品售价50元高出5元,即55﹣50=5(元),则每天可销售商品450件,即500﹣5×10=450(件),商场可获日盈利为(55﹣40)×450=6750(元).答:每天可销售450件商品,商场获得的日盈利是6750元;(2)设商场日盈利达到100元时,每件商品售价为x元.则每件商品比50元高出(x﹣50)元,每件可盈利(x﹣40)元,每日销售商品为500﹣10×(x﹣50)=1000﹣10x(件).依题意得方程(1000﹣10x)(x﹣40)=100,整理,得x2﹣140x+410=0,解得x=60或1.答:每件商品售价为60或1元时,商场日盈利达到100元.17、见解析.【解析】

根据题意利用平行四边形的性质求出∠ABF=∠AED,即DE∥BF,即可解答【详解】∵四边形ABCD是平行四边形,∴∠ADC=∠ABC.又∵DE,BF分别是∠ADC,∠ABC的平分线,∴∠ABF=∠CDE.又∵∠CDE=∠AED,∴∠ABF=∠AED,∴DE∥BF,∵DE∥BF,DF∥BE,∴四边形DEBF是平行四边形.此题考查平行四边形的性质和判定,利用好角平分线的性质是解题关键18、(1)C(3,3);(3)最小值为3+3;(3)D3H的值为3-3或3+3或1-1或1+1.【解析】

(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.

(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.

(3)在旋转过程中,符号条件的△GD3H有8种情形,分别画出图形一一求解即可.【详解】(1)如图1中,

在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,

∴OA=OD=6,∠ADO=63°,

∴∠ODC=133°,

∵BD平分∠ODC,

∴∠ODB=∠ODC=63°,

∴∠DBO=∠DAO=33°,

∴DA=DB=1,OA=OB=6,

∴A(-6,3),D(3,3),B(6,3),

∴直线AC的解析式为y=x+3,

∵AC⊥BC,

∴直线BC的解析式为y=-x+6,

由,解得,

∴C(3,3).

(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.

∵∠FD′G=∠D′GF=63°,

∴△D′FG是等边三角形,

∵S△D′FG=,

∴D′G=,

∴DD′=GD′=3,

∴D′(3,3),

∵C(3,3),

∴CD′==3,

在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,

∴PH=PB,

∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,

∴CD'+D'P+PB的最小值为3+3.

(3)如图3-1中,当D3H⊥GH时,连接ED3.

∵ED=ED3,EG=EG.DG=D3G,

∴△EDG≌△ED3G(SSS),

∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,

∵∠DEB=133°,∠A′EO′=63°,

∴∠DEG+∠BEO′=63°,

∵∠D3EG+∠D3EO′=63°,

∴∠D3EO′=∠BEO′,

∵ED3=EB,E=EH,

∴△EO′D3≌△EO′B(SAS),

∴∠ED3H=∠EBH=33°,HD3=HB,

∴∠CD3H=63°,

∵∠D3HG=93°,

∴∠D3GH=33°,设HD3=BH=x,则DG=GD3=3x,GH=x,

∵DB=1,

∴3x+x+x=1,

∴x=3-3.

如图3-3中,当∠D3GH=93°时,同法可证∠D3HG=33°,易证四边形DED3H是等腰梯形,

∵DE=ED3=DH=1,可得D3H=1+3×1×cos33°=1+1.

如图3-3中,当D3H⊥GH时,同法可证:∠D3GH=33°,

在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1×,

如图3-1中,当DG⊥GH时,同法可得∠D3HG=33°,

设DG=GD3=x,则HD3=BH=3x,GH=x,

∴3x+x=1,

∴x=3-3,

∴D3H=3x=1-1.

如图3-5中,当D3H⊥GH时,同法可得D3H=3-3.

如图3-6中,当DGG⊥GH时,同法可得D3H=1+1.

如图3-7中,如图当D3H⊥HG时,同法可得D3H=3+3.

如图3-8中,当D3G⊥GH时,同法可得HD3=1-1.

综上所述,满足条件的D3H的值为3-3或3+3或1-1或1+1.此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

设另一个根为y,利用两根之和,即可解决问题.【详解】解:设方程的另一个根为y,则y+=4,解得y=,即方程的另一个根为,故答案为:.题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、.【解析】

已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得AB∥CD,AB=CD,即可得∠EAO=∠GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.【详解】∵点O是对角线AC的中点,DE的中点为F,∴OF为△EDG的中位线,∴DG=2OF=4;∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠EAO=∠GCO,在△AOE和△COG中,,∴△AOE≌△COG,∴AE=CG,∵AB=CD,∴BE=DG=4,∵BE=3CG,∴AE=CG=.故答案为:.本题考查了平行四边形的性质、三角形的中位线定理,利用三角形的中位线定理求得DG=4;是解决问题的关键.21、m>【解析】

根据图象的增减性来确定(2m-1)的取值范围,从而求解.【详解】∵一次函数y=(2m-1)x+1,y随x的增大而增大,∴2m-1>1,解得,m>,故答案是:m>.本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.22、1【解析】

根据一次函数的定义可得【详解】解:∵y=(2m﹣1)x3m﹣2+3是一次函数,∴解得m=1.故答案为1.考核知识点:一次函数.理解定义是关键.23、3或1【解析】

分两种情况讨论:①当∠AFE=90°时,易知点F在对角线AC上,设DE=x,则AE、EF均可用x表示,在Rt△AEF中利用勾股定理构造关于x的方程即可;②当∠AEF=90°时,易知F点在BC上,且四边形EFCD是正方形,从而可得DE=CD.【详解】解:当E点与A点重合时,∠EAF的角度最大,但∠EAF小于90°,所以∠EAF不可能为90°,分两种情况讨论:①当∠AFE=90°时,如图1所示,根据折叠性质可知∠EFC=∠D=90°,∴A、F、C三点共线,即F点在AC上,∵四边形ABCD是矩形,∴AC=,∴AF=AC−CF=AC−CD=10−1=4,设DE=x,则EF=x,AE=8−x,在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,即(8−x)2=x2+42,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论