![天津市滨海新区塘沽滨海中学2025届数学高二上期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view8/M02/10/0E/wKhkGWcG0SKAasS0AAHC8czNvII653.jpg)
![天津市滨海新区塘沽滨海中学2025届数学高二上期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view8/M02/10/0E/wKhkGWcG0SKAasS0AAHC8czNvII6532.jpg)
![天津市滨海新区塘沽滨海中学2025届数学高二上期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view8/M02/10/0E/wKhkGWcG0SKAasS0AAHC8czNvII6533.jpg)
![天津市滨海新区塘沽滨海中学2025届数学高二上期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view8/M02/10/0E/wKhkGWcG0SKAasS0AAHC8czNvII6534.jpg)
![天津市滨海新区塘沽滨海中学2025届数学高二上期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view8/M02/10/0E/wKhkGWcG0SKAasS0AAHC8czNvII6535.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市滨海新区塘沽滨海中学2025届数学高二上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.2.设是双曲线的一个焦点,,是的两个顶点,上存在一点,使得与以为直径的圆相切于,且是线段的中点,则的渐近线方程为A. B.C. D.3.直线关于直线对称的直线方程为()A. B.C. D.4.已知等比数列的首项为1,公比为2,则=()A. B.C. D.5.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A. B.C. D.7.若展开式的二项式系数之和为,则展开式的常数项为()A. B.C. D.8.若数列对任意满足,下面选项中关于数列的说法正确的是()A.一定是等差数列B.一定是等比数列C.可以既是等差数列又是等比数列D.可以既不是等差数列又不是等比数列9.过点作圆的切线,则切线的方程为()A. B.C.或 D.或10.直线在y轴上的截距为()A.-1 B.1C. D.11.直线的方向向量为()A. B.C. D.12.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个四面体有五条棱长均为2,则该四面体的体积最大值为_______14.已知抛物线:,过焦点作倾斜角为的直线与交于,两点,,在的准线上的投影分别为,两点,则__________.15.若数列的前n项和,则其通项公式________16.已知数列的前项和为,且满足,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,其中.(1)若,求在处的切线方程;(2)若是函数的极小值点,求函数在区间上的最值;(3)讨论函数的单调性.18.(12分)已知点是抛物线C:上的点,F为抛物线的焦点,且,直线l:与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若,求k的值.19.(12分)在二项式的展开式中,______.给出下列条件:①若展开式前三项的二项式系数的和等于46;②所有奇数项的二项式系数的和为256.试在上面两个条件中选择一个补充在上面的横线上,并解答下列问题:(1)求展开式中二项式系数最大的项;(2)求展开式的常数项.20.(12分)已知点F为抛物线:()的焦点,点在抛物线上且在x轴上方,.(1)求抛物线的方程;(2)已知直线与曲线交于A,B两点(点A,B与点P不重合),直线PA与x轴、y轴分别交于C、D两点,直线PB与x轴、y轴分别交于M、N两点,当四边形CDMN的面积最小时,求直线l的方程.21.(12分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小22.(10分)已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【详解】由题意,在平行六面体中,,可得.故选:A.2、C【解析】根据图形的几何特性转化成双曲线的之间的关系求解.【详解】设另一焦点为,连接,由于是圆的切线,则,且,又是的中点,则是的中位线,则,且,由双曲线定义可知,由勾股定理知,,,即,渐近线方程为,所以渐近线方程为故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.3、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C4、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D5、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.6、B【解析】记椭圆的右焦点为,根据椭圆定义,得到,由题中条件,确定本题的本质即是求的最小值,结合题中数据,即可求出结果.【详解】记椭圆的右焦点为,根据椭圆的定义可得,,所以,因为,当且仅当三点共线时,,即;由题意可得,求的值,即是求最短路径,即求的最小值,所以的最小值为,因此.故选:B.【点睛】思路点睛:求解椭圆上动点到一焦点和一定点距离和的最小值或差的最大值时,一般需要利用椭圆的定义,将问题转化为动点与另一焦点以及该定点距离和的最值问题来求解即可.7、C【解析】利用二项式系数的性质求得的值,再利用二项式展开式的通项公式,求得结果即可.【详解】解:因为展开式的二项式系数之和为,则,所以,令,求得,所以展开式的常数项为.故选:C.8、D【解析】由已知可得或,结合等差数列和等比数列的定义,可得答案【详解】由,得或,即或,若,则数列是等差数列,则B错误;若,当时,数列是等差数列,当时,数列是等比数列,则A错误数列是等差数列,也可以是等比数列;由,不能得到数列为非0常数列,则不可以既是等差又是等比数列,则C错误;可以既不是等差又不是等比数列,如1,3,5,10,20,,故D正确;故选:D9、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C10、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为.故选:A11、D【解析】根据直线方程,求得斜率k,分析即可得直线的方向向量.【详解】直线变形可得,所以直线的斜率,所以向量为直线的一个方向向量,因为,所以向量为直线的方向向量,故选:D12、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由已知中一个四面体有五条棱长都等于2,易得该四面体必然有两个面为等边三角形,根据棱锥的几何特征,分析出当这两个平面垂直时,该四面体的体积最大,将相关几何量代入棱锥体积公式,即可得到答案【详解】一个四面体有五条棱长都等于2,如下图:设除PC外的棱均为2,设P到平面ABC距离为h,则三棱锥的体积V=,∵是定值,∴当P到平面ABC距离h最大时,三棱锥体积最大,故当平面PAB⊥平面ABC时,三棱锥体积最大,此时h为等边三角形PAB的AB边上的高,则h,故三棱锥体积的最大值为:故答案为:114、【解析】设,则,将直线方程与抛物线方程联立,结合韦达定理即得.【详解】由抛物线:可知则焦点坐标为,∴过焦点且斜率为的直线方程为,化简可得,设,则,由可得,所以则故答案为:15、【解析】由和计算【详解】由题意,时,,所以故答案为:16、【解析】当时,,可得,可得数列隔项成等比数列,即所以数列的奇数项和偶数项分别是等比数列,分别求和,即可得解.【详解】因为,,所以,当时,,∴,所以数列的奇数项和偶数项分别是等比数列,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为5,最小值为;(3)答案见解析.【解析】(1)求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程;(2)根据求出a,进而求出函数的单调区间,然后求出函数的最值;(3)先求出导函数,然后讨论a的取值范围,进而求出函数的单调区间.【小问1详解】当时,,,切点坐标为,,切线的斜率为,切线方程为,即.【小问2详解】,是函数的极小值点,,即,,令,得或,令,得,的单调递增区间为,,的单调递减区间为,,函数在区间上的最大值为5,最小值为.【小问3详解】函数的定义域为,,令得,.①当时,,函数在R上单调递增;②当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为;③当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为.综上:时,,函数R上单调递增;时,的单调递增区间为,,单调递减区间为;时,的单调递增区间为,,单调递减区间为.18、(1);(2)1或.【解析】(1)根据抛物线的定义,即可求得p值;(2)由过抛物线焦点的直线的性质,结合抛物线的定义,即可求出弦长AB【详解】(1)抛物线C:的准线为,由得:,得.所以抛物线的方程为.(2)设,,由,,∴,∵直线l经过抛物线C的焦点F,∴解得:,所以k的值为1或.【点睛】考核抛物线的定义及过焦点弦的求法19、(1),;(2).【解析】选择①:,利用组合数公式,计算即可;选择②:转化为,计算即可(1)由于共9项,根据二项式系数性质,二项式系数最大的项为第5项和第6项,利用通项公式计算即可;(2)写出展开式的通项,令,即得解【详解】选择①.,即,即,即,解得或(舍去).选择②.,即,解得.(1)展开式中二项式系数最大的项为第5项和第6项,,.(2)展开式的通项为,令,得,所以展开式中常数项为第7项,常数项为.20、(1);(2)或.【解析】(1)根据给定条件结合抛物线定义求出p即可作答.(2)联立直线l与抛物线的方程,用点A,B坐标表示出点C,D,M,N的坐标,列出四边形CDMN面积的函数关系,借助均值不等式计算得解.【小问1详解】抛物线的准线:,由抛物线定义得,解得,所以抛物线的方程为.【小问2详解】因为点在上,且,则,即,依题意,,设,,由消去并整理得,则有,,直线PA的斜率是,方程为,令,则,令,则,即点C,点D,同理点M,点N,则,,四边形的面积有:,当且仅当,即时取“=”,所以当时四边形CDMN的面积最小值为4,直线l的方程为或.21、(1)证明见解析(2)【解析】(1)连接,可得,从而可证四边形是平行四边形,从而证明结论.(2)以为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系,利用向量法求解线面角.【小问1详解】如图,连接在正方体中,且因为,分别是,的中点,所以且又因为是的中点,所以,且,所以四边形是平行四边形,所以【小问2详解】以为坐标原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系设,则,,,,,,设为平面的法向量因为,,,所以令,得设直线与平面所成角为,则因为,所以直线与平面所成角的大小为22、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 亲子教育项目居间合同样本
- 电影院装修服务合同范本
- 农药购销合同样本
- 三农村公共环境治理体系建设指南
- 生产管理实务操作流程详解
- 网络教育技术运用与发展趋势研究报告与指导书
- 钢化玻璃采购合同书
- 购买豆腐的合同
- 2025年阳江b2货运上岗证模拟考试
- 小学三年级上册口算练习500题
- 学前教育普及普惠质量评估幼儿园准备工作详解
- 青少年人工智能编程水平测试一级-模拟真题01含答案
- 第十五章《探究电路》复习课课件沪科版九年级物理
- 2024年中考物理科技创新题型(教师版)
- 唐山市重点中学2024-2025学年全国高考大联考信息卷:数学试题试卷(3)含解析
- 经营性房屋租赁项目 投标方案(技术方案)
- 未成年上班知情协议书
- 2024年山东药品食品职业学院单招职业适应性测试题库含答案
- 《行政伦理学教程(第四版)》课件 张康之 第8-13章 行政组织伦理-技术时代的行政伦理
- 进出洁净室培训
- 2023-2024学年高中政治统编版选择性必修二7-1 立足职场有法宝 课件(34张)
评论
0/150
提交评论