![山东泰安肥城市2025届高二上数学期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M04/01/3A/wKhkGWcGz9CAE6VEAAHPBOfD0xc910.jpg)
![山东泰安肥城市2025届高二上数学期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M04/01/3A/wKhkGWcGz9CAE6VEAAHPBOfD0xc9102.jpg)
![山东泰安肥城市2025届高二上数学期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M04/01/3A/wKhkGWcGz9CAE6VEAAHPBOfD0xc9103.jpg)
![山东泰安肥城市2025届高二上数学期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M04/01/3A/wKhkGWcGz9CAE6VEAAHPBOfD0xc9104.jpg)
![山东泰安肥城市2025届高二上数学期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M04/01/3A/wKhkGWcGz9CAE6VEAAHPBOfD0xc9105.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东泰安肥城市2025届高二上数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.2.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.3.“”是直线与直线平行的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若函数单调递增,则实数a的取值范围为()A. B.C. D.5.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.6.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.7.已知两个向量,,且,则的值为()A.1 B.2C.4 D.88.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.9.过点,且斜率为2的直线方程是A. B.C. D.10.设集合,集合,当有且仅有一个元素时,则r的取值范围为()A.或 B.或C.或 D.或11.若,则与的大小关系是()A. B.C. D.不能确定12.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.58二、填空题:本题共4小题,每小题5分,共20分。13.已知P为抛物线上的一个动点,设P到抛物线准线的距离为d,点,那么的最小值为______14.在平面直角坐标系中,直线与椭圆交于两点,且,则该椭圆的离心率为__________.15.设圆,圆,则圆有公切线___________条.16.点到直线的距离为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP18.(12分)已知圆D经过点A(-1,0),B(3,0),C(1,2).(1)求圆D的标准方程;(2)若直线l:与圆D交于M、N两点,求线段MN的长度.19.(12分)某企业为响应“安全生产”号召,将全部生产设备按设备安全系数分为A,两个等级,其中等设备安全系数低于A等设备.企业定时对生产设备进行检修,并将部分等设备更新成A等设备.据统计,2020年底该企业A等设备量已占全体设备总量的30%.从2021年开始,企业决定加大更新力度,预计今后每年将16%的等设备更新成A等设备,与此同时,4%的A等设备由于设备老化将降级成等设备.(1)在这种更新制度下,在将来的某一年该企业的A等设备占全体设备的比例能否超过80%?请说明理由;(2)至少在哪一年底,该企业的A等设备占全体设备的比例超过60%.(参考数据:,,)20.(12分)设或,(1)若时,p是q的什么条件?(2)若p是q的必要不充分条件,求a的取值范围21.(12分)如图所示,在空间四边形中,,分别为,的中点,,分别在,上,且.求证:(1)、、、四点共面;(2)与的交点在直线上22.(10分)已知集合,(1)若,求m的取值范围;(2)若“x∈B”是“x∈A”的充分不必要条件,求m的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D2、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.3、C【解析】先根据直线平行的充要条件求出a,然后可得.【详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C4、D【解析】根据函数的单调性,可知其导数在R上恒成立,分离参数,即可求得答案.【详解】由题意可知单调递增,则在R上恒成立,可得恒成立,当时,取最小值-1,故,故选:D5、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.6、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D7、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.8、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.9、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.10、B【解析】由已知得集合M表示以点圆心,以2半径左半圆,与y轴的交点为,集合N表示以点为圆心,以r为半径的圆,当圆C与圆O相外切于点P,有且仅有一个元素时,圆C过点M时,有且有两个元素,当圆C过点N,有且仅有一个元素,由此可求得r的取值范围.【详解】解:由得,所以集合M表示以点圆心,以2半径的左半圆,与y轴的交点为,集合表示以点为圆心,以r为半径的圆,如下图所示,当圆C与圆O相外切于点P时,有且仅有一个元素时,此时,当圆C过点M时,有两个元素,此时,所以,当圆C过点N时,有且仅有一个元素,此时,所以,所以当有且仅有一个元素时,则r的取值范围为或,故选:B.11、B【解析】由题知,进而研究的符号即可得答案.详解】解:,所以,即.故选:B12、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】由抛物线的定义可得,所以,由图可知当三点共线时,取得最小值,从而可求得结果【详解】抛物线的焦点,准线为,如图,过作垂直准线于点,则,所以,由图可知当三点共线时,取得最小值,即最小值为,,所以的最小值为5,故答案为:514、【解析】直线与椭圆相交,求交点,利用列式求解即可.【详解】联立方程得,因为,所以,即,所以,.故答案为:.15、2【解析】将圆转化成标准式,结合圆心距判断两圆位置关系,进而求解.【详解】由题意得,圆:,圆:,∴,∴与相交,有2条公切线.故答案为:216、【解析】直接利用点到直线的距离公式计算即可.【详解】点到直线的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点共线的性质即可求解;(2)根据已知条件得出,运用韦达定理和弦长公式,可得出直线的斜率;(3)根据(1)的结论及求根公式,求得点的坐标,结合的表达式,结合图形可知,由的范围和的取值即可证明.【小问1详解】由题意可知,抛物线的焦点为,设直线的方程为,则,消去,得,,,所以直线的方程为,由因为三点共线,所以,,同理,,,所以,所以.【小问2详解】因为P、Q是线段MN的三等分点,所以,,,又,,所以,所以,解得或(舍)所以直线AB的斜率为.【小问3详解】由(1)知,,得,所以,,又,,,,当时,,由图可知,,而只要,就有,所以当P、Q不是线段MN的三等分点时,以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP18、(1)(2)【解析】(1)设圆D的标准方程,利用待定系数法即可得出答案;(2)利用圆的弦长公式即可得出答案.【小问1详解】解:设圆D的标准方程,由题意可得,解得,所以圆D标准方程为;【小问2详解】解:由(1)可知圆心,半径,所以圆心D(1,0)到直线l:的距离,所以.19、(1)A等设备量不可能超过生产设备总量的80%,理由见解析;(2)在2025年底实现A等设备量超过生产设备总量的60%.【解析】(1)根据题意表示出2020年开始,经过年后A等设备量占总设备量的百分比为,求出,根据的范围进行判断;(2)令>即可求解.【小问1详解】记该企业全部生产设备总量为“1”,2020年开始,经过年后A等设备量占总设备量的百分比为,则经过1年即2021年底该企业A等设备量,,可得,又所以数列是以为首项,公比为的等比数列,可得,所以,显然有,所以A等设备量不可能超过生产设备总量的80%.【小问2详解】由,得.因为单调递减,又,,所以在2025年底实现A等设备量超过生产设备总量的60%.20、(1)充要条件;(2).【解析】(1)根据解一元二次不等式的方法,结合充分性、必要性的定义进行求解判断即可;(2)根据必要不充分条件的性质进行求解即可.【小问1详解】因为,所以,解得或,显然p是q的充要条件;【小问2详解】,当时,该不等式的解集为全体实数集,显然由,但不成立,因此p是q的充分不必要条件,不符合题意;当时,该不等式的解集为:,显然当时,不一定成立,因此p不是q的必要不充分条件,当时,该不等式解集为:,要想p是q的必要不充分条件,只需,而,所以,因此a的取值范围为:.21、(1)证明见解析;(2)证明见解析【解析】(1)由平行关系转化,可得,即可证明四点共面;(2)由条件证明与的交点既在平面上,又在平面上,即可证明.【详解】证明(1)∵,∴∵,分别为,的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【语文】词性辨识及句子结构成分++2024-2025学年统编版高一语文必修下册
- 环境监测员-高级工鉴定复习题练习试卷附答案
- 大气污染练习测试题附答案
- 《麦德龙案例分析》课件
- 《人口迁移的原因》课件
- 《餐飲銷售工作》课件
- 《为政以德复习》课件
- 《小学语文课程下》课件
- 行政职业能力训练课件
- 《钢筋手算》课件
- 火电厂各指标指标解析(最新版)
- keysight眼图和抖动噪声基础知识与测量方法
- TPU材料项目可行性研究报告写作参考范文
- 试用期考核合格证明表
- 锅炉补给水阴阳混床操作步序表
- 2005年第4季度北京住房租赁指导价格
- 医疗器械GMP计算机软件确认控制程序
- 苏教版最新五年级数学上册应用题与解决问题专项
- 髋关节置换术男性患者留置尿管最佳时机探析和对策
- [爆笑小品校园剧本7人]爆笑小品校园剧本
- 岸边集装箱起重机CMS系统
评论
0/150
提交评论