版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省商洛市第3中学数学高一上期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在第二象限,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.03.如图所示的时钟显示的时刻为,此时时针与分针的夹角为.若一个半径为的扇形的圆心角为,则该扇形的面积为()A. B.C. D.4.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.5.设函数的部分图象如图所示,若,且,则()A. B.C. D.6.已知,那么()A. B.C. D.7.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.8.函数中,自变量x的取值范围是()A. B.C.且 D.9.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)10.下列函数中,值域为的偶函数是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的最小值是___________,此时___________.12.如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=AB,则下列结论正确的是_____.(填序号)①PB⊥AD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④sin∠PDA13.已知幂函数的图象过点,则_____________14.已知函数,则______.15.已知向量,,若,则与的夹角为______16.=________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数在区间内存在零点,求实数m的取值范围;(2)若关于x的方程有实数根,求实数m的取值范围.18.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.19.已知角的终边经过点,求的值;已知,求的值20.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值21.设,,已知,求a的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限【详解】解:∵点P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限,故选:C2、D【解析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D3、C【解析】求出的值,利用扇形的面积公式可求得扇形的面积.【详解】由图可知,,所以该扇形的面积故选:C.4、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D5、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C6、B【解析】先利用指数函数单调性判断b,c和1大小关系,再判断a与1的关系,即得结果.【详解】因为在单调递增,,故,即,而,故.故选:B.7、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.8、B【解析】根据二次根式的意义和分式的意义可得,解之即可.【详解】由题意知,,解得,即函数的定义域为.故选:B9、A【解析】根据二次根式的性质求出函数的定义域即可【详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.10、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.0【解析】利用基本不等式求解.【详解】因为,所以,当且仅当,即时,等号成立,所以其最小值是1,此时0,故答案为:1,012、④【解析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【详解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD与AB成60°,∴①不成立,过A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正确;BC与AE是相交直线,所以BC一定不与平面PAE平行,所以③不正确;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正确;故答案为:④【点睛】本题考查线面位置关系判定与证明,考查线线角,属于基础题.熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.13、##【解析】设出幂函数解析式,代入已知点坐标求解【详解】设,由已知得,所以,故答案为:14、2【解析】根据自变量的范围,由内至外逐层求值可解.【详解】又故答案为:2.15、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:16、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先得出函数在的单调性,再根据零点存在定理建立不等式组,解之可得实数m的取值范围.(2)由已知将原方程等价于存在实数x使成立.再根据基本不等式得出,由此可求得实数m的取值范围.【详解】解:(1)因为函数与在都是增函数,所以函数在也是增函数,因为函数在区间内存在零点,所以解得.所以实数m的取值范围为.(2)关于x的方程有实数根等价于关于x的方程有实数根,所以存在实数x使成立.因为(当且仅当,时取等号),所以,所以实数m的取值范围是.18、(1)见解析;(2)见解析.【解析】(1)根据线面平行的判定定理可证明平面;(2)根据面面垂直的判定定理即可证明平面平面.【详解】(1)证明:连结,在中,,分别是,的中点,为的中位线,.在,,分别是,的中点,是的中位线,,.平面,平面.(2)证明:,,,,,平面且面平面平面【点睛】本题主要考查直线与平面平行的判定和平面与平面垂直的判定,属于基础题型.19、(1);(2)【解析】由题意利用任意角的三角函数的定义,诱导公式,求得要求式子的值利用查同角三角函数的基本关系,求得要求式子的值【详解】(1)由题意,因为角的终边经过点,,,(2)由题意,知,所以【点睛】本题主要考查了任意角三角函数的定义与诱导公式,及同角三角函数的基本关系的化简求解,其中解答中熟记三角函数的定义和三角函数的基本关系式,合理应用诱导公式是解答的关键,属于基础题,着重考查了运算与求解能力.20、(1)||=5;;(2);(3).【解析】(1)利用向量的模长的坐标公式即得;(2)利用向量的线性坐标表示即得;(3)利用向量平行的坐标表示即求.【小问1详解】∵向量=(3,4),=(1,2),∴||=5,;【小问2详解】∵=(3,4),=(1,2),=(-2,-2),=m+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托监理工程的监理合同版
- 2024年度钢筋采购合同价格谈判合同2篇
- 连锁服装品牌授权经营合同2024
- 个人承包2024年度库房保卫合同3篇
- 2024年度居间工程资料共享合同3篇
- 《商务系列》课件
- 合同管理制度及流程下载 全新版
- 2024年度知识产权许可与保护合同协议书2篇
- 2024年度工程合同纠纷解决协议2篇
- 《ArtDeco建筑风格》课件
- 2024转向节设计标准
- 《习作:-即景》说课(课件)五年级上册语文部编版
- 2024年高考英语全国II卷试卷本全解析课件
- 全国统一规范电子税务局概况介绍及操作辅导
- 茶叶市场营销策略分析考核试卷
- 2024年国家公务员考试公共基础知识复习题库及答案(共三套)
- 交通企业数据资源资产化操作指引-55正式版-WN8
- 2024延迟退休政策详解
- 2024年老年人能力评估师(技师)职业资格鉴定考试题库(含答案)
- 2024年军队文职人员统一招聘考试英语真题
- 2024年出纳招聘笔试试题及答案
评论
0/150
提交评论