版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省哈尔滨市阿城区龙涤中学高一上数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.下列函数中,既是奇函数又在上有零点的是A. B.C D.3.若方程有两个不相等的实数根,则实根的取值范围是()A. B.C. D.4.函数是指数函数,则的值是A.4 B.1或3C.3 D.15.设,则a,b,c的大小关系为()A. B.C. D.6.已知角的终边与单位圆相交于点,则=()A. B.C. D.7.在边长为3的菱形中,,,则=()A. B.-1C. D.8.设命题:,则的否定为()A. B.C. D.9.已知,,,则的大小关系为()A. B.C. D.10.方程的解为,若,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数函数的定义域为________________12.函数的最大值为,其图象相邻两条对称轴之间的距离为(1)求函数的解析式;(2)设,且,求的值13.已知函数,若,则________.14.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量①若2,则、线性相关;②若、为非零向量,且⊥,则、线性相关;③若、线性相关,、线性相关,则、线性相关;④向量、线性相关的充要条件是、共线上述命题中正确的是(写出所有正确命题的编号)15.已知,则________.16.如图所示,弧田是由圆弧和其所对弦围成的图形,若弧田的弧长为,弧所在的圆的半径为4,则弧田的面积是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)18.某市为发展农业经济,鼓励农产品加工,助推美丽乡村建设,成立了生产一种饮料的食品加工企业,每瓶饮料的售价为14元,月销售量为9万瓶.(1)根据市场调查,若每瓶饮料的售价每提高1元,则月销售量将减少5000瓶,要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为多少元?(2)为了提高月销售量,该企业对此饮料进行技术和销售策略改革,提高每瓶饮料的售价到元,并投入万元作为技术革新费用,投入2万元作为固定宣传费用.试问:技术革新后,要使革新后的月销售收入不低于原来的月销售收入与总投入之和,求月销售量(万瓶)的最小值,以及取最小值时的每瓶饮料的售价.19.已知函数fx=-x2(1)求不等式cx(2)当gx=fx-mx在20.(1)求值:;(2)已知,化简求值:21.已知函数是定义在上的偶函数,当时,(1)求的解析式;(2)解不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据象限角的定义判断【详解】因为,所以是第三象限角故选:C2、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.3、B【解析】方程有两个不相等的实数根,转化为有两个不等根,根据图像得到只需要故答案为B.4、C【解析】由题意,解得.故选C考点:指数函数的概念5、D【解析】根据指数函数的性质求得,,根据对数函数的性质求得,即可得到答案.【详解】由题意,根据指数函数的性质,可得,由对数函数的性质,知,即所以.故选:D6、C【解析】先利用三角函数的定义求角的正、余弦,再利用二倍角公式计算即可.【详解】角的终边与单位圆相交于点,故,所以,故.故选:C.7、C【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项.【详解】.故选:C.【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题.8、B【解析】本题根据题意直接写出命题的否定即可.【详解】解:因为命题:,所以的否定:,故选:B【点睛】本题考查含有一个量词的命题的否定,是基础题.9、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.10、C【解析】令,∵,.∴函数在区间上有零点∴.选C二、填空题:本大题共6小题,每小题5分,共30分。11、(1,3)【解析】函数函数的定义域,满足故答案为(1,3).12、(1)(2)【解析】(1)根据函数的最值求出,由相邻两条对称轴之间的距离为,确定函数的周期,进而求出值;(2)由,求出,利用诱导公式结合的范围求出,的值,即可求出结论.【小问1详解】函数的最大值为5,所以A+1=5,即A=4∵函数图象的相邻两条对称轴之间的距离为,∴最小正周期T=π,∴ω=2故函数的解析式为.【小问2详解】,则由,则,所以所以13、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题14、①④【解析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确【详解】解:若、线性相关,假设λ≠0,则,故和是共线向量反之,若和是共线向量,则,即λμ0,故和线性相关故和线性相关等价于和是共线向量①若2,则20,故和线性相关,故①正确②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时,和可以是任意的两个向量.故③不正确④向量和线性相关的充要条件是和是共线向量,故④正确故答案为①④【点睛】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键15、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.16、【解析】根据题意得,进而根据扇形面积公式计算即可得答案.【详解】解:根据题意,只需计算图中阴影部分的面积,设,因为弧田的弧长为,弧所在的圆的半径为4,所以,所以阴影部分的面积为所以弧田的面积是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【点睛】关键点点睛:本题考查三角函数的应用,解题关键是利用表示出矩形的边长,从而得矩形面积.利用三角函数恒等变换公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求得最大值18、(1)18元;(2),此时每瓶饮料的售价为16元.【解析】(1)先求售价为元时的销售收入,再列不等式求解;(2)由题意有解,参变分离后求的最小值.【详解】(1)设每平售价为元,依题意有,即,解得:,所以要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为18元;(2)当时,,有解,当时,即,,当且仅当时,即时等号成立,,因此月销售量要达到16万瓶时,才能使技术革新后的月销售收入不低于原来的月销售收入与总投入之和,此时售价为16元.【点睛】关键点点睛:本题考查函数的实际应用问题,关键是读懂题意,并能抽象出函数关系,第二问的关键是理解当时,有能使不等式成立,即有解,求的取值范围.19、(1)x∈(2)m≥1【解析】(1)由不等式fx>0的解集为x1<x<2可得x2-bx-c=0的两根是1,2,根据根系数的关系可求b=3和c=-2,代入不等式cx2【详解】(1)由fx>0的解集为x1<x<2,则-x2+bx+c>0的解集为x1<x<2则1+2=b1×2=-c由cx则解集为x∈(2)由gx=-x则3-m2解出m≥1【点睛】本题考查了三个二次的关系,(1)二次函数的图像与x轴交点的横坐标,二次不等解集的端点值,一元二次方程的根是同一个量的不同表现形式;(2)二次函数、二次不等式,二次方程常称作“三个二次”,其中的某类的问题常可以转化为另两类问题加以解决,所以三者的关系密切而重要.其中二次函数是“三个二次”的核心,通过二次函数的图像使它们贯穿一体,使得数形结合思想在此类问题的解决中十分有效20、(1);(2)【解析】(1)由指数和对数的运算公式直接化简可得;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉雕艺术品市场发展现状调查及供需格局分析预测报告
- 2024年度温室大棚设计与施工一体化合同
- 2024年度市场推广与广告投放合同
- 2024年度农产品加工设备租赁及服务合同
- 2024年度广告合同:户外广告位租赁与发布协议
- 紧身腹围市场发展预测和趋势分析
- 药用鹿茸市场需求与消费特点分析
- 焦炉煤气点火器市场发展现状调查及供需格局分析预测报告
- 连帽浴巾市场发展预测和趋势分析
- 秧歌服市场需求与消费特点分析
- 经典广告案例
- 《1980年代“现代派”论争中的现代主义与现实主义问题》
- 材料成型及控制工程基础知识单选题100道及答案解析
- 2024年保育员(中级)考试题库(含答案)
- 环保项目设备采购实施方案
- 数学-江西省稳派上进联考2024-2025学年2025届高三上学期11月调研测试试题和答案
- 2024-2025学年北京十三中分校八年级(上)期中数学试卷
- 广东开放大学2024秋《形势与政策(专)》形成性考核参考答案
- 湖南财政经济学院《证券投资学》2022-2023学年第一学期期末试卷
- 《喜迎建队日 争做好少年》主题班会教案3篇
- 2022年10月自考12350儿童发展理论试题及答案含解析
评论
0/150
提交评论