版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐山市2025届高二数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,2.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.3.函数的单调递减区间为()A. B.C. D.4.已知为抛物线上一点,点P到抛物线C的焦点的距离与它到y轴的距离之比为,则()A.1 B.C.2 D.35.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.6.直线过椭圆内一点,若点为弦的中点,设为直线的斜率,为直线的斜率,则的值为()A. B.C. D.7.窗花是贴在窗纸或窗户玻璃上的剪纸,是古老的传统民间艺术之一.如图是一个窗花的图案,以正六边形各顶点为圆心、边长为半径作圆,阴影部分为其公共部分.现从该正六边形中任取一点,则此点取自于阴影部分的概率为()A. B.C. D.8.若命题为“,”,则为()A., B.,C., D.,9.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.10.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.11.已知数列满足,且,则的值为()A.3 B.C. D.12.椭圆的两焦点之间的距离为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列的前项和为,已知,则__.14.直线的一个法向量________.15.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.16.某市有30000人参加阶段性学业水平检测,检测结束后的数学成绩X服从正态分布,若,则成绩在140分以上的大约为______人三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.18.(12分)如图甲,在直角三角形中,已知,,,D,E分别是的中点.将沿折起,使点A到达点的位置,且,连接,得到如图乙所示的四棱锥,M为线段上一点.(1)证明:平面平面;(2)过B,C,M三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面A'BC所成角的正弦值.①;②直线与所成角的大小为;③三棱锥的体积是三棱锥体积的注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP20.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角余弦值.21.(12分)如图,三棱锥中,为等边三角形,且面面,(1)求证:;(2)当与平面BCD所成角为45°时,求二面角的余弦值22.(10分)已知关于的不等式(1)若不等式的解集为,求的值(2)若不等式的解集为,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:2、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C3、A【解析】先求定义域,再由导数小于零即可求得函数的单调递减区间.【详解】由得,所以函数的定义域为,又,因为,所以由得,解得,所以函数的单调递减区间为.故选:A.4、B【解析】先求出点的坐标,然后根据抛物线的定义和已知条件列方程求解即可【详解】因为为抛物线上一点,所以,得,所以,抛物线的焦点为,因为点P到抛物线C的焦点的距离与它到y轴的距离之比为,所以,化简得,因为,所以,故选:B5、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.6、A【解析】设点与的坐标,进而可表示与,再结合两点在椭圆上,可得的值.【详解】设点与,则,,所以,,又点与在椭圆上,所以,,作差可得,即,所以,故选:A.7、D【解析】求得阴影部分的面积,结合几何概型概率计算公式,计算出所求的概率.【详解】设正六边形的边长为,则其面积为.阴影部分面积为,故所求概率为.故选:D8、B【解析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“,”的否命题为“,”,故选:B9、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D10、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B11、B【解析】根据题意,依次求出,观察规律,进而求出数列的周期,然后通过周期性求得答案.【详解】因为数列满足,,所以,所以,,,可知数列具有周期性,周期为3,,所以.故选:B12、C【解析】根据题意,由于椭圆的方程为,故可知长半轴的长为,那么可知两个焦点的坐标为,因此可知两焦点之间的距离为,故选C考点:椭圆的简单几何性质点评:解决的关键是将方程变为标准式,然后结合性质得到结论,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等差数列的求和公式和等差数列的性质即可求出.【详解】因为等差数列的前项和为,,则,故答案为:33.【点睛】本题考查了等差数列的求和公式和等差数列的性质,属于基础题.14、(答案不唯一)【解析】根据给定直线方程求出其方向向量,再由法向量意义求解作答.【详解】直线的方向向量为,而,所以直线的一个法向量.故答案为:15、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.16、150【解析】根据考试的成绩X服从正态分布.得到考试的成绩X的正太密度曲线关于对称,根据,得到,根据频率乘以样本容量得到这个分数段上的人数【详解】由题意,考试的成绩X服从正态分布考试的成绩X的正太密度曲线关于对称,,,,该市成绩在140分以上的人数为故答案为:150三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由线面平行的判定定理证明;(2)建立空间直角坐标系,用空间向量法求异面直线所成的角【小问1详解】证明:且,由三角形相似可得,,,又,,又平面,平面平面;【小问2详解】解:以为坐标原点,分别以为轴建立空间坐标系,如图.则设异面直线所成角为,则18、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理及面面垂直的判定定理可得证;(2)分别选①,②,③可求得为的中点,再以为坐标原点,向量的方向分别为轴,轴,轴建立空间直角坐标系.利用空间向量求得所求的线面角.【小问1详解】分别为的中点,.,,.,,平面.又平面,∴平面平面.【小问2详解】(2)选①,;,,,,为的中点.选②,直线与所成角的大小为;,∴直线与所成角为.又直线与所成角的大小为,,,为的中点.选③,三棱锥的体积是三棱锥体积的,又,即,为的中点.∵过三点的平面与线段相交于点平面,平面.又平面平面,,为的中点.两两互相垂直,∴以为坐标原点,向量的方向分别为轴,轴,轴的正方向,建立如图所示的空间直角坐标系.则;.设平面的一个法向量为,直线与平面所成的角为.由,得.令,得.则.∴直线与平面所成角的正弦值为.19、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点共线的性质即可求解;(2)根据已知条件得出,运用韦达定理和弦长公式,可得出直线的斜率;(3)根据(1)的结论及求根公式,求得点的坐标,结合的表达式,结合图形可知,由的范围和的取值即可证明.【小问1详解】由题意可知,抛物线的焦点为,设直线的方程为,则,消去,得,,,所以直线的方程为,由因为三点共线,所以,,同理,,,所以,所以.【小问2详解】因为P、Q是线段MN的三等分点,所以,,,又,,所以,所以,解得或(舍)所以直线AB的斜率为.【小问3详解】由(1)知,,得,所以,,又,,,,当时,,由图可知,,而只要,就有,所以当P、Q不是线段MN的三等分点时,以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP20、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;【小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面,所以DC,DB,DE两两垂直以D为原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系设.则,,.从而,设平面BCE的法向量为,则令,得平面ABC的一个法向量为设二面角为,由图可知为锐角,则21、(1)证明见解析;(2).【解析】(1)根据给定条件证得平面即可推理作答.(2)由与平面BCD所成角确定正边长与CD长的关系,再作出二面角的平面角,借助余弦定理计算作答.【小问1详解】在三棱锥中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小问2详解】取BC中点F,连接AF,DF,如图,因为等边三角形,则,而平面平面,平面平面,平面,于是得平面,是与平面BCD所成角,即,令,则,因,即有,由(1)知,,则有,过C作交AD于O,在平面内过O作交BD于E,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建筑防水工程设计与施工一体化合同
- 2024年度融资租赁合同租金计算方式与支付期限
- 2024年度建筑项目施工期调整合同2篇
- 2024年度环保设备研发制造合同
- 钢结构施工全过程课件
- 2024年度战略合作合同及商业机密保护协议
- 2024年度农田水利建设铲车租赁合同
- 2024年度工程建设项目贷款担保合同
- 2024年度网络安全服务承包转让合同
- 汉字趣味交流会课件
- 2024年执业医师考试-医师定期考核(人文医学)考试近5年真题集锦(频考类试题)带答案
- 指向全人发展的幼儿体育课程体系建设
- 院前急救技能竞赛(驾驶员)理论考试题库大全-上(选择题)
- 2024年银行业法律法规知识竞赛活动考试题库(含答案)
- 道法认识生命(作业)【后附答案解析】2024-2025学年七年级道德与法治上册(统编版2024)
- 9知法守法 依法维权 第2课时 守法不违法 (教学设计)-部编版道德与法治六年级上册
- 2024年手工木工职业技能竞赛理论考试题库-下(多选、判断题)
- 形势与政策智慧树知到答案2024年黑龙江农业工程职业学院
- 中国高端私人会所行业市场运营态势及发展前景研判报告
- 三方代付工程款协议书范本2024年
- 2024江苏省铁路集团限公司春季招聘24人高频考题难、易错点模拟试题(共500题)附带答案详解
评论
0/150
提交评论