专题17 圆的有关概念、性质及计算(4大考点)2022-2024中考数学真题分类汇编(全国用)(解析版)_第1页
专题17 圆的有关概念、性质及计算(4大考点)2022-2024中考数学真题分类汇编(全国用)(解析版)_第2页
专题17 圆的有关概念、性质及计算(4大考点)2022-2024中考数学真题分类汇编(全国用)(解析版)_第3页
专题17 圆的有关概念、性质及计算(4大考点)2022-2024中考数学真题分类汇编(全国用)(解析版)_第4页
专题17 圆的有关概念、性质及计算(4大考点)2022-2024中考数学真题分类汇编(全国用)(解析版)_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页试卷第=page2424页,共=sectionpages2525页专题17圆的有关概念、性质及计算(4大考点)(解析版)【考点归纳】TOC\o"1-2"\h\z\u一、考点01圆心角、圆周角 1二、考点02垂径定理 11三、考点03正多边形和圆 32四、考点04弧长和扇形面积 39考点01圆心角、圆周角一、考点01圆心角、圆周角1.(2023·四川宜宾·中考真题)如图,已知点在上,为的中点.若,则等于()

A. B. C. D.【答案】A【分析】连接,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接,如图所示:

点在上,为的中点,,,,根据圆周角定理可知,,故选:A.【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.2.(2024·内蒙古赤峰·中考真题)如图,是的直径,是的弦,半径,连接,交于点E,,则的度数是()A. B. C. D.【答案】B【分析】本题考查了垂径定理,圆周角定理以及三角形的外角性质.先根据垂径定理,求得,利用圆周角定理求得,再利用三角形的外角性质即可求解.【详解】解:∵半径,∴,∴,,∵,∴,∴,故选:B.3.(2024·黑龙江牡丹江·中考真题)如图,四边形是的内接四边形,是的直径,若,则的度数为(

A. B. C. D.【答案】B【分析】此题考查了圆周角定理、圆内接四边形的性质,连接,由是的直径得到,根据圆周角定理得到,得到,再由圆内接四边形对角互补得到答案.【详解】解:如图,连接,

∵是的直径,∴,∵,∴∴∵四边形是的内接四边形,∴,故选:B4.(2024·湖南·中考真题)如图,,为的两条弦,连接,,若,则的度数为(

A. B. C. D.【答案】C【分析】本题考查了圆周角定理,熟知在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半是解题的关键.根据圆周角定理可知,即可得到答案.【详解】根据题意,圆周角和圆心角同对着,,,.故选:C.5.(2024·重庆·中考真题)如图,是的弦,交于点,点是上一点,连接,.若,则的度数为()A. B. C. D.【答案】B【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出,根据等腰三角形的三线合一性质求出,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵,∴,∵,,∴,,∴,故选:B.6.(2024·四川南充·中考真题)如图,是的直径,位于两侧的点C,D均在上,,则度.【答案】75【分析】本题考查圆周角定理,补角求出,根据同弧所对的圆周角是圆心角的一半,进行求解即可.【详解】解:∵是的直径,位于两侧的点C,D均在上,,∴,∴;故答案为:75.7.(2024·北京·中考真题)如图,的直径平分弦(不是直径).若,则

【答案】55【分析】本题考查了垂径定理的推论,圆周角定理,直角三角形的性质,熟练掌握知识点是解题的关键.先由垂径定理得到,由得到,故.【详解】解:∵直径平分弦,∴,∵,∴,∴,故答案为:.8.(2024·河南·中考真题)如图,在中,,,线段绕点C在平面内旋转,过点B作的垂线,交射线于点E.若,则的最大值为,最小值为.【答案】//【分析】根据题意得出点D在以点C为圆心,1为半径的圆上,点E在以为直径的圆上,根据,得出当最大时,最大,最小时,最小,根据当与相切于点D,且点D在内部时,最小,最大,当与相切于点D,且点D在外部时,最大,最小,分别画出图形,求出结果即可.【详解】解:∵,,∴,∵线段绕点C在平面内旋转,,∴点D在以点C为圆心,1为半径的圆上,∵,∴,∴点E在以为直径的圆上,在中,,∵为定值,∴当最大时,最大,最小时,最小,∴当与相切于点D,且点D在内部时,最小,最大,连接,,如图所示:则,∴,∴,∵,∴,∵,∴为等腰直角三角形,∴,∴,即的最大值为;当与相切于点D,且点D在外部时,最大,最小,连接,,如图所示:则,∴,∴,∵四边形为圆内接四边形,∴,∴,∵,∴为等腰直角三角形,∴,∴,即的最小值为;故答案为:;.【点睛】本题主要考查了切线的性质,圆周角定理,圆内接四边形的性质,勾股定理,等腰三角形的性质,解直角三角形的相关计算,解题的关键是作出辅助线,熟练掌握相关的性质,找出取最大值和最小值时,点D的位置.9.(2024·山东·中考真题)如图,是的内接三角形,若,,则.【答案】/40度【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识,利用圆周角定理求出的度数,利用等边对等角、三角形内角和定理求出的度数,利用平行线的性质求出的度数,即可求解.【详解】解∶连接,∵,∴,∵,∴,∵,∴,∴,故答案为:.10.(2024·山东烟台·中考真题)如图,是的直径,内接于,点I为的内心,连接并延长交O于点D,E是上任意一点,连接,,,.(1)若,求的度数;(2)找出图中所有与相等的线段,并证明;(3)若,,求的周长.【答案】(1)(2),证明见解析(3)30【分析】(1)利用圆周角定理得到,再根据三角形的内角和定理求,然后利用圆内接四边形的对角互补求解即可;(2)连接,由三角形的内心性质得到内心,,,然后利用圆周角定理得到,,利用三角形的外角性质证得,然后利用等角对等边可得结论;(3)过I分别作,,,垂足分别为Q、F、P,根据内切圆的性质和和切线长定理得到,,,利用解直角三角形求得,,进而可求解.【详解】(1)解:∵是的直径,∴,又,∴,∵四边形是内接四边形,∴,∴;(2)解:,证明:连接,∵点I为的内心,∴,,∴,∴,,∵,,∴,∴;(3)解:过I分别作,,,垂足分别为Q、F、P,∵点I为的内心,即为的内切圆的圆心.∴Q、F、P分别为该内切圆与三边的切点,∴,,,∵,,,∴,∵,,,∴,∴的周长为.【点睛】本题考查圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.二、考点02垂径定理11.(2024·云南·中考真题)如图,是的直径,点、在上.若,,则(

)A. B. C. D.【答案】B【分析】本题考查了弧弦圆心角的关系,圆周角定理,连接,由可得,进而由圆周角定理即可求解,掌握圆的有关性质是解题的关键.【详解】解:连接,∵,∴,∴,故选:.12.(2024·海南·中考真题)如图,是半圆O的直径,点B、C在半圆上,且,点P在上,若,则等于(

)A. B. C. D.【答案】B【分析】本题考查了圆周角定理,等边三角形的判定和性质.连接,,证明和都是等边三角形,求得,利用三角形内角和定理求得,据此求解即可.【详解】解:连接,,∵是半圆O的直径,,∴,∴和都是等边三角形,∴,∵,∴,∵,∴,∴,∴,故选:B.13.(2024·湖北·中考真题)如图,AB是半圆O的直径,C为半圆O上一点,以点B为圆心,适当长为半径画弧,交于点M,交于点N,分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点D,画射线BD,连接.若,则的度数是(

A.30° B. C. D.【答案】C【分析】本题主要考查尺规作图,圆周角定理,熟练掌握角平分线的作图步骤以及圆周角定理是解答本题的关键.由圆周角定理得到,由直角三角形的性质得到,根据角平分线的定义即可求得答案.【详解】解:是半圆的直径,,,,由题意得,为的平分线,.故选:.14.(2024·内蒙古通辽·中考真题)如图,圆形拱门最下端在地面上,为的中点,为拱门最高点,线段经过拱门所在圆的圆心,若,,则拱门所在圆的半径为(

)A. B. C. D.【答案】B【分析】本题考查的是垂径定理的实际应用。勾股定理的应用,如图,连接,先证明,,再进一步的利用勾股定理计算即可;【详解】解:如图,连接,∵为的中点,为拱门最高点,线段经过拱门所在圆的圆心,,∴,,设拱门所在圆的半径为,∴,而,∴,∴,解得:,∴拱门所在圆的半径为;故选B15.(2024·四川遂宁·中考真题)工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽为米,请计算出淤泥横截面的面积(

)A. B. C. D.【答案】A【分析】本题考查了垂径定理,勾股定理,等边三角形的判定和性质,求不规则图形的面积,过点作于,由垂径定理得,由勾股定理得,又根据圆的直径为米可得,得到为等边三角形,即得,再根据淤泥横截面的面积即可求解,掌握垂径定理及扇形面积计算公式是解题的关键.【详解】解:过点作于,则,,∵圆的直径为米,∴,∴在中,,∵,∴为等边三角形,∴,∴淤泥横截面的面积,故选:.16.(2023·陕西·中考真题)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是的一部分,是的中点,连接,与弦交于点,连接,.已知cm,碗深,则的半径为(

A.13cm B.16cm C.17cm D.26cm【答案】A【分析】首先利用垂径定理的推论得出,,再设的半径为,则.在中根据勾股定理列出方程,求出即可.【详解】解:是的一部分,是的中点,,,.设的半径为,则.在中,,,,,即的半径为.故选:A.【点睛】本题考查了垂径定理、勾股定理的应用,设的半径为,列出关于的方程是解题的关键.17.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,连接,作的垂直平分线交于点,交于点,测出,则圆形工件的半径为(

)A. B. C. D.【答案】C【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出的长;设圆心为O,连接,在中,可用半径表示出的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【详解】解:∵是线段的垂直平分线,∴直线经过圆心,设圆心为,连接.

中,,根据勾股定理得:,即:,解得:;故轮子的半径为,故选:C.18.(2023·广西·中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为,拱高约为,则赵州桥主桥拱半径R约为(

A. B. C. D.【答案】B【分析】由题意可知,,,主桥拱半径R,根据垂径定理,得到,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,,,主桥拱半径R,,是半径,且,,在中,,,解得:,故选B

【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.19.(2024·黑龙江牡丹江·中考真题)如图,在中,直径于点E,,则弦的长为.【答案】【分析】本题考查了垂径定理和勾股定理等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.由垂径定理得,设的半径为,则,在中,由勾股定理得出方程,求出,即可得出,在中,由勾股定理即可求解.【详解】解:∵,,设的半径为,则,在中,由勾股定理得:,即,解得:,,,在中,由勾股定理得:,故答案为:.20.(2024·江西·中考真题)如图,是的直径,,点C在线段上运动,过点C的弦,将沿翻折交直线于点F,当的长为正整数时,线段的长为.【答案】或或2【分析】本题考查了垂径定理,勾股定理,折叠的性质,根据,可得或2,利用勾股定理进行解答即可,进行分类讨论是解题的关键.【详解】解:为直径,为弦,,当的长为正整数时,或2,当时,即为直径,将沿翻折交直线于点F,此时与点重合,故;当时,且在点在线段之间,如图,连接,此时,,,,,;当时,且点在线段之间,连接,同理可得,,综上,可得线段的长为或或2,故答案为:或或2.21.(2023·江苏·中考真题)如图,是的直径,是的内接三角形.若,,则的直径.

【答案】【分析】连接,,根据在同圆中直径所对的圆周角是可得,根据圆周角定理可得,根据圆心角,弦,弧之间的关系可得,根据勾股定理即可求解.【详解】解:连接,,如图:

∵是的直径,∴,∵,∴,∴,又∵,∴,在中,,故答案为:.【点睛】本题考查了在同圆中直径所对的圆周角是,圆周角定理,圆心角,弦,弧之间的关系,勾股定理,熟练掌握以上知识是解题的关键.22.(2024·四川雅安·中考真题)如图,是的直径,点C是上的一点,点P是延长线上的一点,连接,.(1)求证:是的切线;(2)若,求证:;(3)若于D,,,求的长.【答案】(1)见解析(2)见解析(3)【分析】(1)首先由直径得到,然后利用等边对等角得到,等量代换得到,进而证明即可;(2)利用得到,求出,然后利用直角三角形两锐角互余得到,进而求解即可;(3)设,证明出,得到,然后表示出,然后利用勾股定理求解即可.【详解】(1)如图所示,连接,∵是的直径,∴,∴,∵,∴,∵,∴,∴,∴,∴是的切线;(2)证明:∵,∴,∴,由(1)知,∴,∴,∴,∴;(3)设,在中,,∴∴∵∴∴∴,∵,,∴,∴,∴,在中,由勾股定理得,即,整理得,解得,(舍去),故.【点睛】此题考查了直径的性质,切线的判定,相似三角形的性质和判定,勾股定理,解题的关键是掌握以上知识点.23.(2024·江苏常州·中考真题)如图,是的直径,是的弦,连接.若,则.【答案】【分析】本题考查圆周角定理,根据同弧所对的圆周角相等,直径所对的圆周角为直角,结合三角形的内角和定理,进行求解即可.【详解】解:∵是的直径,,,∴,∴;故答案为:.24.(2023·浙江湖州·中考真题)如图,是的半径,弦于点D,连接.若的半径为,的长为,则的长是.【答案】3【分析】根据垂径定理可得AD的长,根据勾股定理可得结果.【详解】解:∵,∴,∴,故答案为:.【点睛】此题主要考查了垂径定理和勾股定理.垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.25.(2023·北京·中考真题)如图,是的半径,是的弦,于点D,是的切线,交的延长线于点E.若,,则线段的长为.

【答案】【分析】根据,得出,,根据等腰直角三角形的性质得出,即,根据,,得出为等腰直角三角形,即可得出.【详解】解:∵,∴,.∵,∴为等腰直角三角形,∴,∴.∵是的切线,∴,∵,∴为等腰直角三角形,∴.故答案为:.【点睛】本题主要考查了垂径定理,等腰直角三角形的判定和性质,切线的性质,解题的关键是熟练掌握垂径定理,得出.26.(2023·湖南永州·中考真题)如图,是一个盛有水的容器的横截面,的半径为.水的最深处到水面AB的距离为,则水面AB的宽度为.

【答案】【分析】过点作于点,交于点,则,依题意,得出,进而在中,勾股定理即可求解.【详解】解:如图所示,过点作于点,交于点,则,

∵水的最深处到水面AB的距离为,的半径为.∴,在中,∴故答案为:.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.27.(2024·广西·中考真题)如图,已知是的外接圆,.点D,E分别是,的中点,连接并延长至点F,使,连接.(1)求证:四边形是平行四边形;(2)求证:与相切;(3)若,,求的半径.【答案】(1)证明见解析(2)证明见解析(3)【分析】(1)先证明,,再证明,可得,,再进一步解答即可;(2)如图,连接,证明,可得过圆心,结合,证明,从而可得结论;(3)如图,过作于,连接,设,则,可得,求解,可得,求解,设半径为,可得,再利用勾股定理求解即可.【详解】(1)证明:∵点D,E分别是,的中点,∴,,又∵,,∴,∴,,∴,,∴四边形是平行四边形;(2)证明:如图,连接,∵,为中点,∴,∴过圆心,∵,∴,而为半径,∴为的切线;(3)解:如图,过作于,连接,∵,∴,设,则,∴,∴,∴,∴,∴,∴,∵,,,∴,∴,设半径为,∴,∴,解得:,∴的半径为.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,勾股定理的应用,平行四边形的判定与性质,切线的判定,垂径定理的应用,做出合适的辅助线是解本题的关键.28.(2024·四川·中考真题)如图,AB为⊙O的弦,C为的中点,过点C作,交的延长线于点D.连接.

(1)求证:CD是⊙O的切线;(2)若,求的面积.【答案】(1)见解析(2)【分析】本题考查了圆的切线的判定、勾股定理、垂径定理的推论等知识点,熟记相关结论是解题关键.(1)由垂径定理的推论可知,据此即可求证;(2)利用勾股定理求出即可求解;【详解】(1)证明:∵AB为⊙O的弦,C为的中点,由垂径定理的推论可知:,∵,∴,∵为⊙O的半径,∴CD是⊙O的切线;(2)解:∵,∴,∴,∴.29.(2023·山东·中考真题)如图,在平面直角坐标系中,点在第一象限内,与轴相切于点,与轴相交于点,.连接,.

(1)求点的坐标;(2)求的值.【答案】(1)(2)【分析】(1)如图,连接,,过点P作,垂足为D,由垂径定理得,由,得,,由切线性质,得,,进一步可证四边形是矩形,得,中,,于是的坐标;(2)如图,由等腰三角三线合一,得,由圆周角定理,而,从而,中,,于是.【详解】(1)如图,连接,,过点P作,垂足为D,则∵点,∴,

∵与轴相切于点∴,∵∴四边形是矩形∴∴中,∴点的坐标(2)如图,,∴而∴中,∴【点睛】本题考查圆的切线的性质,圆周角定理,垂径定理,添加辅助线构造直角三角形,运用勾股定理是解题的关键.30.(2024·江苏无锡·中考真题)如图,是的直径,内接于,,的延长线相交于点,且.(1)求证:;(2)求的度数.【答案】(1)见详解(2)【分析】本题主要考查了圆周角定理,相似三角形的判定以及性质,圆内接四边形的性质,等边对等角等知识,掌握这些性质是解题的关键.(1)由等弧所对的圆周角相等可得出,再由等边对等角得出,等量代换可得出,又,即可得出.(2)连接,由直径所对的圆周角等于得出,设,即,由相似三角形的性质可得出,再根据圆内接四边形的性质可得出,即可得出的值,进一步即可得出答案.【详解】(1)证明:∵∴,∵,∴,∴,又∵∴,(2)连接,如下图:∵为直径,∴,设,∴,由(1)知:∴,∵四边形是圆的内接四边形,∴,即,解得:三、考点03正多边形和圆31.(2024·四川雅安·中考真题)如图,的周长为,正六边形内接于.则的面积为(

A.4 B. C.6 D.【答案】B【分析】本题考查正多边形和圆,掌握正六边形的性质,解直角三角形是正确解答的关键.根据正六边形的性质以及解直角三角形进行计算即可.【详解】解:设半径为,由题意得,,解得,∵六边形是的内接正六边形,∴,∵,∴是正三角形,∴,∴弦所对应的弦心距为,∴.故选:B.32.(2023·四川德阳·中考真题)已知一个正多边形的边心距与边长之比为,则这个正多边形的边数是(

)A.4 B.6 C.7 D.8【答案】B【分析】如图,A为正多边形的中心,为正多边形的边,,为正多边形的半径,为正多边形的边心距,由可得,可得,而,可得为等边三角形,从而可得答案.【详解】解:如图,A为正多边形的中心,为正多边形的边,,为正多边形的半径,为正多边形的边心距,

∴,,,∴,∴,即,∴,∴,而,∴为等边三角形,∴,∴多边形的边数为:,故选B【点睛】本题考查的是正多边形与圆,锐角三角函数的应用,熟练的利用数形结合的方法解题是关键.33.(2023·江苏无锡·中考真题)下列命题:①各边相等的多边形是正多边形;②正多边形是中心对称图形;③正六边形的外接圆半径与边长相等;④正n边形共有n条对称轴.其中真命题的个数是(

)A.4 B.3 C.2 D.1【答案】C【分析】根据正多边形的性质以及正多边形与圆的关系逐一进行判断即可.【详解】解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;正三角形和正五边形就不是中心对称图形,故②为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;根据轴对称图形的定义和正多边形的特点,可知正n边形共有n条对称轴,故④为真命题.故选:C.【点睛】本题考查的是正多边形的概念以及正多边形与圆的关系,属于基础题型.34.(2024·江苏镇江·中考真题)如图,是的内接正n边形的一边,点C在上,,则.

【答案】10【分析】本题考查了正多边形和圆、圆周角定理等知识,求出中心角的度数是解题的关键.由圆周角定理得,再根据正边形的边数中心角,即可得出结论.【详解】解:,,,故答案为:10.35.(2024·山东东营·中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率的近似值为3.1416,如图,的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计的面积,可得的估计值为.若用圆内接正八边形近似估计的面积,可得的估计值为.【答案】【分析】本题考查了圆内接正多边形的性质,三角形的面积公式,勾股定理等,正确求出正八边形的面积是解题的关键.过点A作,求得,根据勾股定理可得,即可求解.【详解】如图,是正八边形的一条边,点O是正八边形的中心,过点A作,在正八边形中,∴∵,,解得:∴∴正八边形为∴∴∴的估计值为故答案为:.36.(2023·江苏·中考真题)如图,3个大小完全相同的正六边形无缝隙、不重叠的拼在一起,连接正六边形的三个顶点得到,则的值是.

【答案】【分析】如图所示,补充一个与已知相同的正六边形,根据正六边形的内角为,设正六边形的边长为1,求得,根据正切的定义,即可求解.【详解】解:如图所示,补充一个与已知相同的正六边形,

∵正六边形对边互相平行,且内角为,∴

过点作于,∴设正六边形的边长为1,则,,∴故答案为:.【点睛】本题考查了正六边形的性质,解直角三角形,熟练掌握正六边形的性质是解题的关键.37.(2023·内蒙古·中考真题)如图,正六边形的边长为2,以点A为圆心,为半径画弧,得到扇形(阴影部分).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是.

【答案】【分析】首先确定扇形的圆心角的度数,然后利用圆锥的底面圆周长是扇形的弧长计算即可.【详解】解:∵正六边形的外角和为,∴每一个外角的度数为,∴正六边形的每个内角的度数为,设这个圆锥底面圆的半径是r,根据题意得,,解得,故答案为:.【点睛】本题考查正多边形和圆及圆锥的计算,解题的关键是求得正六边形的内角的度数,并理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.38.(2023·陕西·中考真题)如图,正八边形的边长为2,对角线、相交于点.则线段的长为.

【答案】【分析】根据正八边形的性质得出四边形是矩形,、是等腰直角三角形,,再根据矩形的性质以及直角三角形的边角关系求出,,即可.【详解】解:如图,过点作于,由题意可知,四边形是矩形,、是等腰直角三角形,,

在中,,,,同理,,故答案为:.【点睛】本题考查正多边形和圆,掌握正八边形的性质以及直角三角形的边角关系是正确解答的前提.四、考点04弧长和扇形面积39.(2024·江苏无锡·中考真题)已知圆锥的底面圆半径为3,母线长为4,则圆锥的侧面积为(

)A. B. C. D.【答案】B【分析】本题考查了圆锥的侧面积展开图公式,解题的关键是掌握圆锥的侧面积的计算公式:圆锥的侧面积底面半径母线长.【详解】解:,故选:B.40.(2024·云南·中考真题)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为厘米,底面圆的半径为厘米,则该圆锥的侧面积为(

)A.平方厘米 B.平方厘米C.平方厘米 D.平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公式计算即可求解,掌握圆锥侧面积计算公式是解题的关键.【详解】解:圆锥的底面圆周长为厘米,∴圆锥的侧面积为平方厘米,故选:.41.(2024·广东广州·中考真题)如图,圆锥的侧面展开图是一个圆心角为的扇形,若扇形的半径是5,则该圆锥的体积是(

)A. B. C. D.【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为,则圆锥的底面周长为,根据弧长公式得出侧面展开图的弧长,进而得出,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为,则圆锥的底面周长为,圆锥的侧面展开图是一个圆心角为的扇形,且扇形的半径是5,扇形的弧长为,圆锥的底面周长与侧面展开图扇形的弧长相等,,,圆锥的高为,圆锥的体积为,故选:D.42.(2024·贵州·中考真题)如图,在扇形纸扇中,若,,则的长为(

)A. B. C. D.【答案】C【分析】本题考查了弧长,根据弧长公式∶求解即可.【详解】解∵,,∴的长为,故选∶C.43.(2024·河南·中考真题)如图,是边长为的等边三角形的外接圆,点D是的中点,连接,.以点D为圆心,的长为半径在内画弧,则阴影部分的面积为(

)A. B. C. D.【答案】C【分析】过D作于E,利用圆内接四边形的性质,等边三角形的性质求出,利用弧、弦的关系证明,利用三线合一性质求出,,在中,利用正弦定义求出,最后利用扇形面积公式求解即可.【详解】解∶过D作于E,∵是边长为的等边三角形的外接圆,∴,,,∴,∵点D是的中点,∴,∴,∴,,∴,∴,故选:C.【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.44.(2024·河北·中考真题)扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为时,扇面面积为、该折扇张开的角度为时,扇面面积为,若,则与关系的图象大致是(

)A. B. C. D.【答案】C【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为,根据扇形的面积公式表示出,进一步得出,再代入即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为,,∴,∵该折扇张开的角度为时,扇面面积为,∴,∴,∴是的正比例函数,∵,∴它的图像是过原点的一条射线.故选:C.45.(2024·安徽·中考真题)若扇形的半径为6,,则的长为(

)A. B. C. D.【答案】C【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得,的长为,故选:C.46.(2024·重庆·中考真题)如图,在矩形中,分别以点和为圆心,长为半径画弧,两弧有且仅有一个公共点.若,则图中阴影部分的面积为(

)A. B.C. D.【答案】D【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得,由勾股定理得出,用矩形的面积减去2个扇形的面积即可得到结论.【详解】解:连接,根据题意可得,∵矩形,∴,,在中,,∴图中阴影部分的面积.故选:D.47.(2020·贵州毕节·中考真题)如图,已知点,是以为直径的半圆的三等分点,的长为,则图中阴影部分的面积为()A. B. C. D.【答案】A【分析】本题考查了扇形面积的计算,连接,,根据,是以为直径的半圆的三等分点,可得,是等边三角形,将阴影部分的面积转化为扇形的面积,根据求解即可.【详解】解:连接,,,,是以为直径的半圆的三等分点,,,又,、是等边三角形,,,,弧的长为,,解得:,.故选:A.48.(2024·甘肃兰州·中考真题)“轮动发石车”是我国古代的一种投石工具,在春秋战国时期被广泛应用,图1是陈列在展览馆的仿真模型,图2是模型驱动部分的示意图,其中,的半径分别是1cm和10cm,当顺时针转动3周时,上的点P随之旋转,则.【答案】108【分析】本题主要考查了求弧长.先求出点P移动的距离,再根据弧长公式计算,即可求解.【详解】解:根据题意得:点P移动的距离为,∴,解得:.故答案为:10849.(2024·江苏宿迁·中考真题)已知圆锥的底面半径为3,母线长为12,则其侧面展开扇形的圆心角的度数为°.【答案】【分析】本题考查圆锥的侧面积,以及扇形面积,解决本题的关键是掌握圆锥的侧面积公式,以及扇形面积公式.设侧面展开扇形的圆心角的度数为度,根据“圆锥的侧面积扇形面积”建立等式求解,即可解题.【详解】解:设侧面展开扇形的圆心角的度数为度,侧面展开扇形的面积为:,解得,故答案为:.50.(2024·江苏扬州·中考真题)若用半径为的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为.【答案】5【分析】本题考查了圆锥的计算.用到的知识点为:圆锥的侧面展开图弧长等于底面周长.根据题意得圆锥的母线长为,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为,∴圆锥的底面半径为,故答案为:5.51.(2024·吉林·中考真题)某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由和扇形组成,分别与交于点A,D.,,,则阴影部分的面积为(结果保留).【答案】【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:,故答案为:.52.(2024·四川成都·中考真题)如图,在扇形中,,,则的长为.【答案】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得的长为,故答案为:53.(2024·山东济宁·中考真题)如图,三个顶点的坐标分别是.(1)将向下平移2个单位长度得,画出平移后的图形,并直接写出点的坐标;(2)将绕点逆时针旋转得.画出旋转后的图形,并求点运动到点所经过的路径长.【答案】(1)作图见解析,(2)作图见解析,【分析】本题考查了作图—平移变换和旋转变换,弧长公式,解题的关键熟练掌握平移和旋转的性质,(1)利用平移的性质作出对应点,再连线即可,(2)利用旋转的性质分别作出对应点,再连线,运动到点所经过的路径长即为弧长即可可求解【详解】(1)解:如下图所示:由图可知:;(2)解:如上图所示:运动到点所经过的路径为:54.(2024·吉林长春·中考真题)一块含角的直角三角板按如图所示的方式摆放,边与直线重合,.现将该三角板绕点顺时针旋转,使点的对应点落在直线上,则点A经过的路径长至少为.(结果保留)【答案】【分析】本题主要考查了旋转的性质、弧长公式等知识点,掌握弧长公式成为解题的关键.由旋转的性质可得,即,再根据点A经过的路径长至少为以B为圆心,以为半径的圆弧的长即可解答.【详解】解:∵将该三角板绕点顺时针旋转,使点的对应点落在直线上,∴,即,∴点A经过的路径长至少为.故答案为:.55.(2024·黑龙江齐齐哈尔·中考真题)若圆锥的底面半径是1cm,它的侧面展开图的圆心角是直角,则该圆锥的高为cm.【答案】【分析】本题考查了圆锥的计算.设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解方程即可得母线长,然后利用勾股定理求得圆锥的高即可.【详解】解:设圆锥的母线长为R,根据题意得,解得:.即圆锥的母线长为,∴圆锥的高cm,故答案是:.56.(2024·湖南长沙·中考真题)半径为4,圆心角为的扇形的面积为(结果保留).【答案】【分析】本题考查扇形的面积公式,根据扇形的面积公式(n为圆心角的度数,r为半径)求解即可.【详解】解:由题意,半径为4,圆心角为的扇形的面积为,故答案为:.57.(2024·湖北·中考真题)如图,在中,,点在上,以CE为直径的经过AB上的点,与交于点,且.(1)求证:AB是的切线;(2)若,,求的长.【答案】(1)证明见解析;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论