初中数学概念(苏教版)_第1页
初中数学概念(苏教版)_第2页
初中数学概念(苏教版)_第3页
初中数学概念(苏教版)_第4页
初中数学概念(苏教版)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、整数

整数(Integer):像-2,-1,0,1,2这样的数称为整数。整数是人类能够掌握的最基本的数

学工具。

如何分类

我们以0为界限,将整数分为三大类

a、正整数,即大于0的整数如,1,2,3.........n,...

b、0既不是正整数,也不是负整数,他是介于正整数和负整数的数

c、负整数,即小于0的整数如,-1,-2,-3.........-n,...

2、分数

把整体"1”平均分成若干份,表示这样的一份或几份的数叫做分数。分母表示把一个物体平均

分成几份,分子是表示这样几份的数。把1平均分成分母份,表示这样的分子份。

a

分子在上分母在下,(如这样表示工)也可以把它当做除法来看,用分子除以分母,相

反除法也可以改为用分数表示。

百分数与分数的区别

(1)意义不同,百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示

具体的数,又可以表示两个数的关系,表示具体数时可带单位名称。

(2)百分数的分子可以是整数,也可以是小数;而分数的分子不能是小数只是除0以

外的自然数;百分数不可以约分,而分数一般通过约分化成最简分数。

(3)任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有

百分数的意义。

(4)应用范围的不同,百分数在生产和生活中,常用于调查、统计、分析和比较,而分数

常常在计算、测量中的不到整数结果时使用。

3、正数与负数

正数:大于0的数叫正数。如1、15、3000、口

负数:比零小(<0)的数。用负号(即相当于减号)“一”标记。如-2、-5.33、-45、-0.6等。

任何正数前加上负号都等于负数.负数比零,正数小

在数轴线上,负数都在0的左侧,没有最大与最小的负数,所有的负数都比自然数小。

七年级上1.1

4、有理数

tn

整数和分数统称为有理数,任何一个有理数都可以写成分数7(m、n都是整数,且n#0)

的形式。

无限不循环小数和开根开不尽的数叫无理数

任何一个有理数都可以在数轴上表示。

其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。

无限不循环小数称之为无理数(例如:圆周率兀)

有理数和无理数统称为实数。

正整数

正数

正分数

40

负整数

负数

负分数

有理数

有理数包括:

(1)自然数:数0,1,2,3,……叫做自然数.

(2)正整数:+1,+2,+3...........叫做正整数。

(3)负整数:-1,—2,—3).......叫做负整数。

(4)整数:正整数、0、负整数统称为整数。

(5)分数:正分数、负分数统称为分数。

(6)奇数:不能被2整除的整数叫做奇数。如-3,-1,1,5等。所有的奇数都可用2n-l

或2n+l表示,n为整数。

(7)偶数:能被2整除的整数叫做偶数。如-2,0,4,8等。所有的偶数都可用2n表示,

n为整数。

(8)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为

质数,又称素数,如2,3,11,13等。2是最小的质数。

(9)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为

合数,如4,6,9,15等。4是最小的合数。一个合数至少有3个因数。

(10)互质数:如果两个正整数,除了1以外没有其他公因数,这两个整数称为互质数,

如2和5,7和13等。

如3,-98.11,5.72727272........7/22都是有理数。

七年级上1.2.1

5、数轴

规定了唯一的原点,唯一的正方向和唯一的单位长度的直线叫数轴。所有的实数都可以用数

轴上的点来表示。也可以用数轴来比较两个实数的大小。

画一条水平直线,在直线上取一点表示0(叫做原点,origin),选取某一长度作为单位

长度,规定直线上向右的方向为正方向(positivedirection),就得到右面的数轴。所以原点、

单位长度、正方向是数轴的三要素。如图:

利用数轴可以比较有理数的大小,数轴上从左往右的点表示的数就是按从小到大的顺

序。

数轴意义:

1)从原点出发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)

上的点对应负数,原点对应零。

2)在数轴上表示的两个数,正方向的数大于负方向的数。

3)正数都大于0,负数都小于0,正数大于一切负数。

数轴是一种特定几何图形;原点、正方向、长度单位称数轴的三要素,这三者缺一不可.

把规定了唯一的原点,正方向,单位长度的一条直线叫做数轴。

任何一个有理数都可以用数轴上的一个点来表示,但数轴上的数不都是有理数。

一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。

七年级上1.2.2

6、相反数

相反数:只有符号不同的两个数互为相反数,其中的一个数叫做另一个数的相反数。

相反数的代数意义:到原两个数的和为零,其中一个数是另一个数的相反数,这两个数称为

互为相反数。

相反数的几何意义:到原点距离相等的两个点表示的两个数是互为相反数。

在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。

正数的相反数是负数,负数的相反数是正数。a的相反数是-a,0的相反数是0。

七年级上1.2.3

7、绝对值

绝对值:数轴上一个数所对应的点与原点的距离叫做该数绝对值。绝对值只能为非负数。

几何意义:在数轴上,一个数到原点的距离叫做该数的绝对值.如:指在数轴上表示的点

与原点的距离,这个距离是5,所以的绝对值是5,又如指在数轴上表示1.5的点与原点的

距离,这个距离是1.5,所以1.5的绝对值是1.5。

代数意义:正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0

互为相反数的两个数的绝对值相等。

a的绝对值用“|a表示.读作“a的绝对值”.|a|=a(a>0)|a|=-a(a<0)»

七年级上124

8、近似数

一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数(approximate

number).

如:我国的人口无法计算准确数目,但是可以说出一个近似数.比如说我国人口有13亿,13亿

就是一个近似数。

在通常情况下,近似数相加减,精确度最低的一个已知数精确到哪一位,和或者差也至多只

能精确到这一位。示例

例如,一个同学去年体重30.4千克,今年体重比去年增加了3.18千克。求今年体重时

要把这两个近似数加起来。因为30.4只精确到十分位,比3.18的精确度(精确到百分位)

低,所以加得的和最多也只能精确到十分位。

七年级上1.5.3

9、科学计数法

数学术语,axlO的n次塞的形式。将一个数字表示成(axlO的n次基的形式),其中七同

<10,n表示整数,这种记数方法叫科学记数法。

用嘉的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是

300000000米/秒;全世界人口数大约是:6100000000

这样的大数,读、写都很不方便,考虑到10的嘉有如下特点:

10的二次方=100,10的三次方=1000,10的四次方=10000...。

一般的,10的n次嘉,在1的后面有n个0,这样就可用10的嘉表示一些大数,如:

6100000000=6.1x1000000000=6.lx109

任何非0实数的0次方都等于I

当有了负整数指数基的时候,小于1的正数也可以用科学记数法表示。例如:

0.00001=10-5(10的负5次方),即小于1的正数也可以用科学记数法表示为a乘10的负

n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。

有效数字:在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所

有的数字都叫这个近似数字的有效数字。

例如:890314000保留三位有效数字为8.90x10"(8.90*10的8次方)

0.00934593保留三位有效数字为9・35xl0“(9.35*10的-3次方)

七年级上1.5.2

10、有理数的运算

有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下

的运算律成立(a、b、c等都表示任意的有理数):

①加法的交换律a+b=b+a;

②加法的结合律a+(b+c)=(a+b)+c;

③存在数0,使0+a=a+0=a;

④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;

⑤乘法的交换律ab=ba;

⑥乘法的结合律a(bc)=(ab)c;

⑦分配律a(b+c)=ab+ac;

⑧存在乘法的单位元1#),使得对任意有理数a,la=al=a;

⑨对于不为0的有理数a,存在乘法逆元1/a,使a(l/a尸(l/a)a=l。

⑩0a=0

此外,有理数是一个序域,即在其上存在一个次序关系£

有理数还是一个阿基米德域,即对有理数a和b,a>0,b>0,必可找到一个自然数n,使nb>a。

由此不难推知,不存在最大的有理数。

有理数加减混合运算

1.理数加减统一成加法的意义:

对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将

混合运算统一为加法运算,统一后的式子是儿个正数或负数的和的形式,我们把这样的式子

叫做代数和。

2.有理数加减混合运算的方法和步骤:

(1)运用减法法则将有理数混合运算中的减法转化为加法。

(2)运用加法法则,加法交换律,加法结合律简便运算。

有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。

一般情况下,有理数是这样分类的:

整数、分数;正数、负数和零;负有理数,非负有理数

11、乘方

乘方的意义、各部分名称及读写

在“中,相同的乘数a叫做底数(basenumber),a的个数n叫做指数(exponent),乘方运

算的结果废叫做幕(念mi)。优读作a的n次方,如果把屋看作乘方的结果,则读作a的n

23

次幕。a或a的二次方(或a的二次幕)也可以读作a的平方;a或a的三次方(或a的

三次累)也可以读作a的立方。

每一个自然数都可以看作这个数的一次方,也叫作一次幕。如:8可以看作8:当指数

是1时,通常省略不写。

运算顺序:先乘方,再括号,接乘除,尾加减。

(1)、相同乘数相乘的积用乘方表示

(2)、根据乘方的意义计算出答案

4

1)9:2)0\

94=9x9x9x9=6561

可以看出°”=0(n为正数)

(3)、〃°=1(n/0)

(4)、区别易混的概念

1)G与8x3;2)5x2与5、3)4x5?与(4x5)-

(5)、计算一个数的小数次方,如果那个小数是有理数,就把它化为p/q(即分数)的形式,

那么任何一个数n的p/q次方就等于n的p次方再开q次根号

七年级上1.5.1

12、单项式

数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式(单项式是整式,而不是分

式))。单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的

次数。任何一个非零数的零次方等于1。

注意:

1)、分母含有未知数的式子不属于单项式。例如,龙不是单项式。

2)、单独的一个数字或字母也是单项式。例如,1和fv也是单项式,°.5〃?+〃不是单

项式。

单项式是字母与数的乘积。

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

单项式的系数:单项式中的数字因数。如:2xy的系数是2;-5zy的系数是-5

字母t的指数是1,100t是一次单项式如:,仍g、孙1b……都是单项式。

用运算符号把表示数的字母或数连接起来的式子叫代数式。

代数式不含有‘竺、"尹’符号等

单项式书写规则:数与字母相乘时,数在字母前;乘号可以省略为点或不写;除法的式

子可以写成分数式;带分数与字母相乘,带分数要化为假分数

单项式是几次,就叫做几次单项式

字母不能在分母中

“兀”是数,不是字母,读pai

注意

1.数字写在字母的前面,省略乘号。[5a、16xy等]

2.常数(也就是自然数)的次数为0。

3.单项式分母不能为字母。(因为这样为分式,不为单项式)

4.兀是常数,因此也可以作为系数。

5.若系数是带分数,要化成假分数。

6.但一个单项式的系数是1或-1时,力”通常省略不写,如[(-1)2口写成[713]等。

7.在单项式中字母不可以做分母,分子可以。【注:像三分之a+b之类的不是单项式】

8.单项式中系数不为0,否则单项无意义。

单项式乘法法则:

单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连

同它的指数作为积的一个因式

13、多项式

若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多

项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。

不含字母的项叫做常数项。如一式中:最高项的次数为5,此式有3个单项式组成,则称其

为:五次三项式。

比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际

上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负

无穷大。

注意:

(1)由于多项式的每一项都是单项式,股每一项既有系数,又有次数,整个多项式没有系

数;(2)多项式的次数是组成多项式的各单项式中次数最高的那个单项式次数;(3)把多项

式的项和次数结合起来,通常叫做几次几项式,如f+x+l是二次三项式;(4)多项式的

每一项都包括其前面的符号。

14、整式

整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有

字母.单项式和多项式统称为整式.

2x/3是单项式、0.4X+3是多项式,他们都属于整式。而x/y不是整式。

代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不

含变数者,则称为整式.

代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,

或含有字母的数学表达式称为代数式。例如:ax+2b,—2/3,b八2/26,电+也等。

注意:1、不包括等于号(=、三)、不等号(丰、<.>,<、>、*、次)、约等号2、

可以有绝对值。例如:|x|,|-2.25|等。

整式不包括开方,分母是字母的数。

整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘

除.

加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为基的运算性

质,法则可以分为整式、除法,公式可以分为乘法公式、零指数基和负整数指数基.数与字母的

乘积叫做单项式。儿个单项式的和是多项式。单项式与多项式统称为整式。单项式中的数字

因数叫做单项式的系数。单项式中所有字母的指数和叫做单项式的指数。多项式中次数最高

项的次数叫做多项式的次数。多项式可以按降辕和升基排列,(1)升幕:按照多项式中制定

的未知数的次数从低到高排列;(2)降幕:按照多项式中制定的未知数的次数从高到低排列。

七年级上2.1

15、分式

分式的基本概念:形如A/B,A、B是整式,B中含有未知数且B不等于。的整式叫做分式

(fraction)»其中A叫做分式的分子,B叫做分式的分母。

掌握分式的概念应注意:

判断一个式子是否是分式,不要看式子是否是A/B的形式,关键要满足。

(1)分式的分母中必须含有未知数。

(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

由于字母可以表示不同的数,所以分式比分数更具有一般性。

整式和分式统称为有理式。

带有根号的式子叫做无理式

无理式和有理式统称代数式

分式的法则

1).约分:

把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

2).分式的乘法法则:

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

3).分式的加减法法则:

同分母的分式相加减,分母不变,把分子相加减。

4).通分:

异分母的分式可以化成同分母的分式,这一过程叫做通分。如:3/2和2/3可化为9/6

和4/6.即:3*3/2*3,2*2/3*2!

5).异分母分式的加减法法则:

异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则

进行计算。

注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分

母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,

也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为

0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也

就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

分式的基本性质和变形应用

1.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为。的整式,分式的

值不变。用式子表示为:A/B=A*C/B*CA/B=A-C/B-C(A,B,C为整式,且C#0)

2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.

3.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将

它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因

式约去.

注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的

字母,指数取公共字母的最小指数,即为它们的公因式.

4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般

将一个分式化为最简分式.

5.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.

6.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公

分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.

注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次累及单

独字母的寨的乘积.

注:(1)约分和通分的依据都是分式的基本性质2.(2)分式的约分和通分都是互逆运算过

程.

分式的四则运算

1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:

a/c±b/c=aib/c

2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分

母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad土cb/bd

3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积

的分母.用字母表示为:a/b*c/d=ac/bd

4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相

乘.a/b+c/d=ad/bc

(2).除以-一个分式,等于乘以这个分式的倒数:a/b+c/d=a/b*d/c

16、方程

含有未知数的等式叫方程

方程(英文:equation)是表示两个数学式(如两个数、函数、量、运算)之间相等关系的

一种等式,通常在两者之间有一等号“="。方程不用按逆向思维思考,可直接列出等式并含

有未知数。它具有多种形式,如一元一次方程、二元一次方程等。

等式的基本性质1

等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。

用字母表示为:若2=卜c为一个数或一个代数式。则:

(l)a+c=b+c

(2)a-c=b-c

等式的基本性质2

等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。

(3)若2=也则6=2(等式的对称性)。

(4)若a=b,b=c则a=c(等式的传递性)。

用字母表示为:若2=1),c为一个数或一个代数式(不为0)。贝I:

axc=bxca+c=b+c

方程的一些概念:

方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程的解的过程叫做解方程。

解方程的依据:1.移项;2.等式的基本性质;3.合并同类项;4.加减乘除各部分间的

关系。

解方程的步骤:1.能计算的先计算:2.转化——计算——结果

17、一元一次方程

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做

一元一次方程。

通常形式是ax+b=0(a,b为常数,且a/))。一元一次方程属于整式方程,即方程两边都是

整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=O(其中x是未知数,a、b是已知数,并且a翔)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数必须是1o一元一次方程英文是(linearequationin

one)

性质

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时乘一个数或除以同一个不为0的数,等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减一同一个

数,等式仍然成立。

一般解法

1)去分母方程两边同时乘各分母的最大公倍数。

2)去括号一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定

使计算简便。可根据乘法分配律。

3)移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项

时别忘记了要变号。(一般都是这样:(比方)从5x=4x+8得到5x-4x=8;把未知数移到

一起!〜

4)合并同类项将原方程化为ax=b(a翔)的形式。

5)系数化一方程两边同时除以未知数的系数。

6)得出方程的解。

同解方程

如果两个方程的解相同,那么这两个方程叫做同解方程。

方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

做一元一次方程应用题的重要方法:

(1)认真审题(2)分析已知和未知的量(3)找一个等量关系(4)设未知数(5)列方程

(6)解方程(7)检验(8)写出答

18、二元一次方程

二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一

次方程

二元一次方程组定义:由两个二元一次方程组成的方程组,叫二元一次方程组

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的

解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:

代入消元法

例:解方程组x+y=5①6x+13y=89②

解:由①得x=5-y③把③带入②,得6(5-y)+13y=89,解得y=59/7

把y=59/7带入③,得x=5-59/7,即x=-24/7

.,.x=-24/7,y=59/7

这种解法就是代入消元法。

加减消元法

例:解方程组x+y=9①x-y=5②

解:①+②,得2x=14,即x=7

把x=7带入①,得7+y=9,解得y=2

Ax=7,y=2

这种解法就是加减消元法。

二元一次方程组的解有三种情况:

1.有一组解

如方程组x+y=5①6x+13y=89②的解为x=-24/7,y=59/7«

2.有无数组解

如方程组x+y=6①2x+2y=12②,因为这两个方程实际上是一个方程(亦称作“方程有两

个相等的实数根”),所以此类方程组有无数组解。

3.无解

如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5,这与方程①相矛盾,所

以此类方程组无解。

20、一元二次方程

在一个等式中,只含有一个未知数,且未知数的最高次数是二次的整式方程叫做一元二次方

程。

一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整

式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行

整理.如果能整理为以2+bx+c=°(aw0)的形式,则这个方程就为一元二次方程.(4)

将方程化为一般形式:ar2+bx+c=o时,应满足伍,0)

一般解法

1)配方法

(可解全部一元二次方程)

如:解方程:xA2+2x——3=0

解:把常数项移项得:x八2+2x=3

等式两边同时加1(构成完全平方式)得:xA2+2x+l=4

因式分解得:(x+l)A2=4

解得:xl=-3,x2=l

用配方法解一元二次方程小口诀

二次系数化为一

常数要往右边移

一次系数一半方

两边加上最相当

2)公式法(可解全部一元二次方程)

首先要通过b人2-4ac的值来判断一元二次方程有几个根

1.当bA2-4ac<0时x无实数根(初中)

2.当b八2-4ac=0时x有两个相同的实数根即xl=x2

3.当y2-4ac>0时x有两个不相同的实数根

当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-biV

(bA2—4ac)}/2a

来求得方程的根

3)因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、"公式法(又分“平

方差公式”和“完全平方公式'‘两种)”和“十字相乘法”。

如:解方程:xA2+2x+l=0

解:利用完全平方公式因式分解得:(x+1)人2=0

解得:xl=x2=-l

4.直接开平方法(可解部分一元二次方程)

如何选择最简单的解法:

(1)、看是否可以直接开方解;

(2)、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方

公式法,最后考虑十字相乘法);

(3)、使用公式法求解;

(4)、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻

烦)。

例题精讲:

1)、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如

(x-m)A2=n(应0)的方程,其解为x=m±4n

例1.解方程(1)(3x+l)A2=7(2)9xA2-24x+16=ll

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x4)八2,右

边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+l)A2=7

.,.(3x+l)A2=7

3x+1=±47(注意不要丢解)

x=...

,原方程的解为xl=...,x2=...

(2)解:9xA2-24x+16=ll

/.(3x-4)A2=ll

.,.3x-4=±-Vll

••x=...

,原方程的解为xl=...,x2=...

2.配方法:

例1用配方法解方程3xA2-4x-2=0

解:将常数项移到方程右边3x入2-4x=2

将二次项系数化为1:xA2-x=

方程两边都加上一次项系数一半的平方:xA2-x+()A2=+()A2

配方:(x-)八2=

直接开平方得:x-=±

x=

原方程的解为xl=,x2=.

3.公式法:把一元二次方程化成ax入2+bx+c的一般形式,然后把各项系数a,b,c的值

代入求根公式就可得到方程的根。

当bA2-4ac>0时,求根公式为x1=[-b+^(bA2-4ac)]/2a,x2=[-b-^/(bA2-4ac)]/2a(两个不相等

的实数根)

当b八2-4ac=0时,求根公式为xl=x2=-b/2a(两个相等的实数根)

当bA2-4ac<0时,求根公式为x1=[-b+^/(4ac-bA2)i]/2a,x2=[-b-^(4ac-bA2)i]/2a(两个虚数

根)(初中理解为无实数根)

例3.用公式法解方程2xA2-8x=-5

解:将方程化为一般形式:2xM-8x+5=0

•*.a=2,b=-8,c=5

bA2-4ac=(-8)2-4x2x5=64-40=24>0

:.x===

,原方程的解为xl=,x2=.

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式

的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程

所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(l)(x+3)(x-6)=-8(2)2xA2+3x=0

(3)6xA2+5x-50=0(选学)(4)xA2-4x+4=0(选学)

(1)解:(x+3)(x-6)=-8化简整理得

x人2-3x-10=0(方程左边为二次三项式,右边为零)

(x-5)(x+2)=0(方程左边分解因式)

x-5=0或x+2=0(转化成两个一元一次方程)

.".xl=5,x2=-2是原方程的解。

(2)解:2xA2+3x=0

x(2x+3尸0(用提公因式法将方程左边分解因式)

Ax=O或2x+3=0(转化成两个一元一次方程)

Ax1=0,x2=-3/2是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0(十字相乘分解因式时要特别注意符号不要出错)

A2x-5=0或3x+10=0

Axl=5/2,x2=-10/3是原方程的解。

(4)解:xA2-4x+4=0(V4可分解为2-2,,此题可用因式分解法)

(x-2)(x-2)=0

Ax1=2,x2=2是原方程的解。

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先

将方程写成一般形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能

法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应

先计算判别式的值,以便判断方程是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以

一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初

中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,

配方法,待定系数法)。

21、分式方程

分式方程是方程中的一种,且分母里含有未知数的方程叫做分式方程(ftactionalequation)。

例如100/x=95/x+0.35

分式方程的解法:

①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字

母取最高次暴③出现的因式取最高次累),将分式方程化为整式方程;若遇到互为相反数时.

不要忘了改变符号};②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类

项,系数化为1)求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化

为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否

则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。

如果分式本身约分了,也要带进去检验。

在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验是否符合题意。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此

要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.

归纳:

解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边

同乘最简公分母,这也是解分式方程的一般思路和做法0

例题:

(1)x/(x+l)=2x/(3x+3)+l

两边乘3(x+l)

3x=2x+(3x+3)

3x=5x+3

2x=-3

x=-3/2

分式方程要检验

经检验,x=-3/2是方程的解

(2)2/(x-1)=4/(xA2-l)

两边乘(x+l)(x-l)

2(x+l)=4

2x+2=4

2x=2

X=1

分式方程要检验

把x=l带入原方程,使分母为0,是增根。

所以原方程2/x-l=4/xA2-l

无解

一定要检验!!

检验格式:把x=a带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根.若

x=a使最简公分母不为零,则a是原方程的根.

注意:可凭经验判断是否有解。若有解,带入所有分母计算:若无解,带入无解分母即

22、不等式

一般的,用符号(或"W'),(或"N"),“尹’连接的式子叫做不等式。不等式中可以

含有未知数,也可以不含)

不等式的性质:

(1)不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

(4)不等式的两边都乘以0,不等号变等号。

不等式的基本性质(字母表示)

性质1:如果a>b,那么a±c>b±c

性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c)

性质3:如果a>b,c<0,那么ac<bc(或a/c〈b/c)

不等式的最基本性质

①如果x>y,那么y<x;如果yVx,那么x>y;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

④如果x>y,z>0.那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法则)

⑤如果x>y,z>0,那么x+z>y+z;如果x>y,z<0,那么x+z<y+z。

⑥如果x>y,m>n,那么x+m>y+n(充分不必要条件)

⑦如果x>y>0,m>n>0,那么xm>yn

⑧如果x>y>0,那么x的n次幕>y的n次基(n为正数)

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以下是其

中比较有名的。

解不等式可遵循的一些同解原理

主要的有:

①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,那么不

等式F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。

③如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)

>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H(x)G(x)同解;如果H

(x)<0,那么不等式F(x)<G(x)与不等式H(x)F(x)>H(x)G(x)同解。

④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)V0与不等式同解。

注意事项

1.符号:

不等式两边都乘以或除以一个负数,要改变不等号的方向。

2.确定解集:

比两个值都大,就比大的还大;

比两个值都小,就比小的还小;

比大的大,比小的小,无解:

比小的大,比大的小,有解在中间。

三个或三个以上不等式组成的不等式组,可以类推。

3.另外,也可以在数轴上确定解集:

把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某

一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个

就要几个。

4.不等式两边相加或相减,同一个数或式子,不等号的方向不变。(移项要变号)

5.不等式两边相乘或相除,同一个正数,不等号的方向不变。(相当系数化1,这是得正

数才能使用)

6.不等式两边乘或除以同一个负数,不等号的方向改变。(+或xl个负数的时候要变号)

25、平面直角坐标系

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标

系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的

正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐

标轴,它们的公共原点O称为直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,

右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象

限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴

取相同的单位长度。

点的坐标

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反

过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对

应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样.

特殊位置的点的坐标的特点

1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵

坐标互为相反数。

3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵

坐标相同,则两点的连线平行于横轴。

4.点到轴及原点的距离

点到x轴的距离为|y|;点到y轴的距离为冈:点到原点的距离为x的平方加y的平方

再开根号;

在平面直角坐标系中对称点的特点

1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)

2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)

3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为

相反数。(横纵皆反)

各象限内和坐标轴上的点和坐标的规律

第一象限:(+,+)正正

第二象限:(-,+)负正

第三象限:负负

第四象限:(+,-)正负

x轴正方向:(+,0)

x轴负方向:(-,0)

y轴正方向:(0,+)

y轴负方向:(0,-)

x轴上的点的纵坐标为0,y轴上的点的横坐标为0。

注:以数对形式(x,y)表示的坐标系中的点(如2,-4),“2”是x轴坐标,“-4”是y

轴坐标。

25、函数

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确

定值与其对应,那么我们就说x是自变量,y是x的函数

与函数有关的概念:

我们称数值发生变化的量叫变量。有些数值是不随变量而改变的,我们称他们为常量。

自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的

固定值。

因变量(函数),随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只

有唯一一值与其相对应。

26、正比例函数

一般地,两个变量x,y之间的关系式可以表示成形如产kx(k为常数,且k/))的函数,

那么y就叫做x的正比例函数。正比例函数属于一次函数,但一次函数却不一定是正比例

函数。正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴

上的截距”为零,则为正比例函数。正比例函数的关系式表示为:产kx(k为比例系数)当

K>0时(一三象限),K越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增

大.当K<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y

的值则逐渐减小.

1)定义域:R(实数集)

2)值域:R(实数集)

3)奇偶性:奇函数

4)单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0

时,图像位于第二、四象限,y随x的增大而减小(单调递减).

5)周期性:不是周期函数。

6)对称轴:直线,无对称轴。

正比例函数解析式的求法

设该正比例函数的解析式为y=kx(厚0),将已知点的坐标带入上式得到k,即可求出

正比例函数的解析式。

另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程

组,求出其x,y值即可。

正比例函数的图像

正比例函数的图像是经过坐标原点(0,0)和定点(x,kx)两点的一条直线,它的斜

率是k,横、纵截距都为0。

正比例函数图像的作法

1.在x允许的范围内取一个值,根据解析式求出y值

2.根据第一步求的x、y的值描出点

3.做过第二步描出的点和原点的直线

正比例函数的应用

正比例函数在线性规划问题中体现的力量也是无穷的。

比如斜率问题就取决于K值,当K越大,则该函数图像与x轴的夹角越大,反之亦然

还有,y=kx是y=k/x的图像的对称轴。

①正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应

的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比

例关系.①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,

(一定)正比例关系可以用以下关系式表示:

②正比例关系两种相关联的量的变化规律:对于比值为正数的,即y=kx(k>0),此时的y

与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所

用的时间是否成正比例?

以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关

系.注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一

种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比

例.例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也

不成正比例关系。

30、一次函数

一次函数(linearfunction),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次

函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的基本概念:在一个变化过程中,有两个变量x和y,并且对于x每一个确定的值,在

y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也可以说x是自变量,y是

因变量。表示为y=kx+b(k/0,k、b均为常数),当b=0时称y为x的正比例函数,正比

例函数是一次函数中的特殊情况。可表示为y=kx»现在是初二教学本里最难的一章(当

然有一些人例外),应用最广泛,知识最丰富的数学课题

相关性质

函数性质:

1)y的变化值与对应的x的变化值成正比例,比值为k.

即:y=kx+b(k#0)(k不等于0,且k、b为常数),

当x增力Hm,k(x+m)+b=y+km,km/m=k«

2)当x=0时,b为函数在y轴上的点,坐标为(0,b)»

3)当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4)在两个一次函数表达式中:

当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;

当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行:

当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;

当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,

b)。

图像性质

1)作法与图形:通过如下3个步骤:

(1)列表.

(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知

道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0

与b).

2)性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k#))。(2)

一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都

是过原点。

3)函数不是数,它是指某一变化过程中两个变量之间的关系。

4)k,b与函数图像所在象限:

y=kx时(即b等于0,y与x成正比例):

当k>0时,直线必通过第一、三象限,y随x的增大而增大;

当k<0时,直线必通过第二、四象限,y随x的增大而减小。

y=kx+b时:

当k>0,b>0,这时此函数的图象经过第一、二、三象限;

当k>0,b<0,这时此函数的图象经过第一、三、四象限:

当k<0,b>0,这时此函数的图象经过第一、二、四象限;

当k<0,b<0,这时此函数的图象经过第二、三、四象限;

当b>0时,直线必通过第一、二象限;

当b<0时,直线必通过第三、四象限。

特别地,当b=0时,直线通过原点0(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直

线只通过第二、四象限,不会通过第一、三象限。

27、反比例函数

一般地,如果两个变量x、y之间的关系可以表示成丫=1</*(1(为常数,k网)的形式,那么

称y是x的反比例函数。因为y=k/x是一个分式,所以自变量X的取值范围是X和。而尸k/x

有时也被写成xy=k或y=kx-&supl;»

反比例函数表达式

y=k/x其中X是自变量,Y是X的函数

y=k/x=kl/x

xy=k

y=k-x"(-1)(即:y等于x的负壹次方)

产k\x(k为常数且HO),x翔)

反比例函数的自变量的取值范围

①kro;②在一般的情况下,自变量x的取值范围可以是不等于o的任意实数;

③函数y的取值范围也是任意非零实数。

反比例函数图象

反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K#))。

反比例函数性质

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0

时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论