江苏省徐州市沛县重点达标名校2023-2024学年中考数学押题卷含解析_第1页
江苏省徐州市沛县重点达标名校2023-2024学年中考数学押题卷含解析_第2页
江苏省徐州市沛县重点达标名校2023-2024学年中考数学押题卷含解析_第3页
江苏省徐州市沛县重点达标名校2023-2024学年中考数学押题卷含解析_第4页
江苏省徐州市沛县重点达标名校2023-2024学年中考数学押题卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省徐州市沛县重点达标名校2023-2024学年中考数学押题卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定2.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为圆,则⊙O的“整点直线”共有()条A.7 B.8 C.9 D.103.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣34.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A. B. C. D.5.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短 B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线6.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9172095关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是267.在△ABC中,若=0,则∠C的度数是()A.45° B.60° C.75° D.105°8.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是()A. B. C. D.9.下列运算正确的是()A.﹣3a+a=﹣4a B.3x2•2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x410.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(共7小题,每小题3分,满分21分)11.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.12.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.13.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.14.已知是方程组的解,则3a﹣b的算术平方根是_____.15.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.16.分解因式:=______.17.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.三、解答题(共7小题,满分69分)18.(10分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整数解.19.(5分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.20.(8分)计算21.(10分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.22.(10分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.23.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.24.(14分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选:C.【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.2、D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.3、A【解析】

方程变形后,配方得到结果,即可做出判断.【详解】方程,变形得:,配方得:,即故选A.【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.4、D【解析】

根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图②中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.5、C【解析】

用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.6、C【解析】

根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数==12,故本选项正确;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.7、C【解析】

根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故选C.8、C【解析】

先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.9、D【解析】

根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A.﹣3a+a=﹣2a,故不正确;B.3x2•2x=6x3,故不正确;C.4a2﹣5a2=-a2,故不正确;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.10、C【解析】

直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、2-2【解析】

根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为:(2-2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.12、.【解析】

作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【详解】解:如图作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋转的性质可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积==,故答案:.【点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.13、130【解析】分析:n边形的内角和是因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.详解:设多边形的边数为x,由题意有解得因而多边形的边数是18,则这一内角为故答案为点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.14、2.【解析】

灵活运用方程的性质求解即可。【详解】解:由是方程组的解,可得满足方程组,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算术平方根是,故答案:【点睛】本题主要考查二元一次方程组的性质及其解法。15、【解析】解:将170000用科学记数法表示为:1.7×1.故答案为1.7×1.16、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.17、亏损1【解析】

设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【详解】设盈利20%的电子琴的成本为x元,

x(1+20%)=960,

解得x=10;

设亏本20%的电子琴的成本为y元,

y(1-20%)=960,

解得y=1200;

∴960×2-(10+1200)=-1,

∴亏损1元,

故答案是:亏损;1.【点睛】考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.三、解答题(共7小题,满分69分)18、,1.【解析】

首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.【详解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,当a=1时,原式==1.19、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.【解析】

(1)设抛物线解析式为y=ax2+bx+c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)∵点M的横坐标为m,∴点M的纵坐标为m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,∴当m=﹣1时,S有最大值,最大值为S=9;故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)∵点Q是直线y=﹣x上的动点,∴设点Q的坐标为(a,﹣a),∵点P在抛物线上,且PQ∥y轴,∴点P的坐标为(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以点Q坐标为(﹣4,4),②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.【点睛】本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.20、【解析】

先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】原式=,=,=,=.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.【详解】(1)∵A(0,3),B(,0),∴AB=2,∵点C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是线段AB的“等长点”,∵点C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D(﹣,0),∴m=,n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴AD=AB=2,∴m=2;∴D(,3)(3)如图2,∵直线y=kx+3k=k(x+3),∴直线y=kx+3k恒过一点P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,当PF与⊙B相切时交y轴于F,∴PA切⊙B于A,∴点F就是直线y=kx+3k与⊙B的切点,∴F(0,﹣3),∴3k=﹣3,∴k=﹣,当直线y=kx+3k与⊙A相切时交y轴于G切点为E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直线y=kx+3k上至少存在一个线段AB的“等长点”,∴﹣≤k≤,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.22、(1)且;(2),.【解析】

(1)根据一元二次方程的定义和判别式的意义得到m≠0且≥0,然后求出两个不等式的公共部分即可;

(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.【详解】(1)∵.解得且.(2)∵为正整数,∴.∴原方程为.解得,.【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.23、(1)y=﹣x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)(,2)或(,﹣2).【解析】

(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.【详解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣,∴抛物线解析式为y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论